The
 Current amps

Catalogue

The
 Chauvin Arnoux

 current Clamps

 current Clamps}

Catalogue

Clamps $_{\text {nat taxatbe poboses }}$ "accessories"

Selection guide AC i. 2
Selection guide AC/DC i. 3
Selection guide Scope / Leakage / Process / CT ouput i. 4
AC current clamps
MINIPINCE 1.0
MN 2.0

- Y 3.0
- C. 4.0
- D 5.0
- B 6.0
- AmpFLEX 7.0
AC/DC Current Clamps
- K 8.0
- E 9.0
- PAC 10.0
AcCESSORIES (Leads, atificial neutral, etc...) 11.0
Clamps
" products 10
Clamp-on current 12.0
Clamp-on multimeter 13.0
Clamp-on harmonique meters 14.0
Clamp-on power 15.0
Clamp-on ground resistance testers 16.0
See last page for detalls of "made to order " model.

A modern method for measuring electrical intensity

INTRODUCTION

Clamp-on current probes are designed to extend the current measuring capabilities of DMMs, power instruments, oscilloscopes, hand-held scopes, recorders or loggers, and other diverse instruments. The probe is "clamped" around the current carrying conductor to perform non contact current measurements and without interrupting the circuit under test. The Probe outputs current or voltage signals directly proportional to the measured current, thereby providing current measuring and displaying capabilities to instruments with low current or voltage inputs.
When making a measurement, the current carrying conductor circuit is not broken and remains electrically isolated from the meter input terminals. As a result, the meter's low input terminal may be either floated or grounded. It is not necessary to interrupt the power supply when using a clamp-on current probe for taking measurements, so costly down time can be eliminated.
True RMS measurements within the probe frequency response are possible by using most CHAUVIN ARNOUX current probes with a true RMS Multimeter. In most cases, RMS measurements are not limited by the probes, but by the instrument to which they are connected. Best results are provided by probes offering inherent high accuracy, good frequency response, and minimal phase shift.
CHAUVIN ARNOUX offers the widest selection of current probes available to measure AC or DC current. Several CHAUVIN ARNOUX probes are patented for their unique circuitry and design.

AC CLAMP-ON CURRENT PROBES

Theory of Operation

An AC clamp-on current probe may be viewed as a variance of a simple current transformer.
A transformer (Figure 1) is essentially two coils wound on a common iron core. A current 11 is applied through the coil $C 1$, inducing through the
common core a current 12 in the coil C 2 . The number of turns of each coil and the current are related by :
$\mathrm{N} 1 \times \mathrm{I} 1=\mathrm{N} 2 \times \mathrm{I} 2$, where N 1 and N 2 are the number of turns in each coil. From this relationship :

$$
\mathrm{I} 2=\mathrm{N} 1 \times \mathrm{I} 1 / \mathrm{N} 2 \text { ou } \mathrm{I} 1=\mathrm{N} 2 \times \mathrm{I} 2 / \mathrm{N} 1
$$

Figure 1
This same principle is applied to a clamp-on current probe (Figure 2). The articulated magnetic core holds the coil B2 and clamps onto a conductor where the current I1 is flowing.
B1 is simply the conductor where the user is measuring the current with the number of turns N1 equal to one. The current probe clamped around the conductor provides an output proportional to the number of turns in its coil B2, such that :
I2 (probe output) $=\mathrm{N} 1 / \mathrm{N} 2 \times \mathrm{I} 1$ where N1 $=1$ or Probe output $=11 / \mathrm{N} 2$ (Number of turns in the probe coil)

It is often difficult to measure I1 directly because of currents which are too high to be fed directly into a meter or simply because breaking into the circuit is not possible. To provide a manageable output level multiple turns are set into the probe coil bobbin.

Figure 2
The number of turns in the clamp-on coil are generally simple multiples (e.g. 100,500 or 1000).
If N2 equals 1000, then the clamp has a ratio of $\mathrm{N} 1 / \mathrm{N} 2$ or $1 / 1000$, which is expressed as 1000:1. Another way to express this ratio is to say that the probe output is $1 \mathrm{~mA} / \mathrm{A}$ - the probe output is 1 mA (I2) for 1A (or 1A @ 1000A) flowing in the jaw window.

There are numerous other ratios possible : 500:5, 2000:2, 3000:1, 3000:5, etc. for different applications.
The most common application is the use of a current probe with a digital multimeter. Take as an example a current probe with a ratio of 1000:1 (Model C30) with an output of $1 \mathrm{~mA} / \mathrm{A}$.
This ratio means that any current flowing through the probe jaws will result in a current flowing at the output :

Conductor input	Probe ouput
1000 A	1 A
750 A	750 mA
250 A	250 mA
10 A	10 mA

The probe output is connected to a DMM set on the AC current range to handle the probe output. Then, to determine the current in the conductor, multiply the reading of the DMM by the ratio (e.g., 150 mA read on the 200 mA DMM range represents $150 \mathrm{~mA} \times 1000=150 \mathrm{~A}$ in the conductor measured).
Current probes may be used with other instruments with current ranges, provided that these instruments have the required input impedance (see Figure 3).

Figure 3
Current probes may also have AC or DC voltage outputs to accommodate current measurements with instruments (loggers, scopes, etc.) with voltage ranges only (Figures 4 and 5).

Figure 4

Figure 5

This is simply done by conditioning the current probe output inside the probe to provide voltage (e.g., Model Y4N or Mini 1). In these cases, the probe mV output is proportional to the measured current (e.g., 1 mV AC/A AC).

AC/DC CLAMP-ON CURRENT PROBES

Theory of Operation (Hall effect)

Differing from traditional AC transformers, $A C / D C$ current sensing is often achieved by measuring the strength of a magnetic field created by a current-carrying conductor in a semiconductor chip using the Hall effect principle.
When a thin semiconductor (Figure 6) is placed at right angles to a magnetic field (B), and a current (Id) is applied to it, a voltage (Vh) is developed across the semiconductor. This voltage is known as the Hall voltage, named after the US scientist Edwin Hall who first reported the phenomenon.

Figure 6
When the Hall device drive current (Id) is held constant, the magnetic field (B) is directly proportional to the current in a conductor. Thus, the Hall output voltage (Vh) is representative of that current. Such an arrangement has two important benefits for universal current measurement.
First, since the Hall voltage is not dependent on a reversing magnetic field, but only on its strength, the device can be used for DC measurement.
Second, when the magnetic field strength varies due to varying current flow in the conductor, response to change is instantaneous. Thus, complex AC wave forms may be detected and measured with high accuracy and low phase shift.
The basic construction of a probe jaw assembly is shown in Figure 7, (Note: one or two Hall generators are used depending on the type of current probe).

Figure 7
The many CHAUVIN ARNOUX AC/ DC Current Probes were developed based on the above principle, together with patented electronic circuitry incorporating signal conditioning for linear output and a temperature compensation network. These have a wide dynamic range and frequency response with highly accurate linear output, for application in all areas of current measurement up to 1500 A. Direct currents can be measured without the need of expensive, power consuming shunts, and alternating currents up to several kHz can be measured with fidelity to respond to the requirements of complex signals and RMS measurements.
The probe outputs are in $\mathrm{mV}(\mathrm{mV}$ DC when measuring $D C$, and $m V A C$ when measuring $A C$) and may be connected to most instruments with a voltage input, such as DMMs, loggers, oscilloscopes, hand held scopes, recorders, etc.
CHAUVIN ARNOUX also offers different technologies for DC measurements such as in the K1 and K2 designed to measure very low DC currents and using saturated magnetic technology.
AC/DC probes also offer the opportunity to display or measure True RMS in $A C$ or $A C+D C$.

AC OR DC CURRENT MEASUREMENT

© Connect the probe to the instrument.

- Select the function and range.
- Clamp the probe around a single conductor.
Read the conductor's current value.
Examples (figure 8):

AC : Probe Model : Y2N

Ratio : 1000:1
Output : 1 mA AC/ A-AC.
DMM : Set to $200 \mathrm{~mA} A C$ range
DMM Reading : 125 mA AC
Current in Conductor :
$125 \mathrm{~mA} \times 1000=125 \mathrm{~A} \mathrm{AC}$

DC : Probe Model : PAC 21
1 mV DC/A DC (Hall sensor) DMM : Set to 200 mV DC range DMM Reading : 160 mV DC Current in Conductor: 160 A DC
AC : Probe Model : PAC 11
Output :-1 mV AC/A AC
(Hall sensor)
DMM : Set to 200 mV AC range
DMM Reading : 120 mV AC
Current in Conductor: 120 A AC
DC : Micro probe K1
Output : $1 \mathrm{mV} / \mathrm{mA}$
DMM : Set to 200 mV DC range
DMM Reading : 7.4 mV DC
Current in Conductor : 7.4 mA DC

Figure 8

LOW CURRENT, PROCESS LOOPS, LEAKAGE AND DIFFERENTIAL MEASUREMENTS

Numerous probes are offered for low current measurements. for example, the Models K1 and K2 have a 50 mA DC sensitivity and the Model K2 may be used on 4-20 mA process loops. The selection guide has a special section on low current probes.

Example : 4-20 mA loop

Probe Model K2

Output: $10 \mathrm{mV} / \mathrm{mA}$
DMM : Set to 200 mV DC range
DMM reading : 135 mV DC
Loop Current : 13.5 mA DC
When the current to be measured is too low for the probe or better accuracy is required, it is possible to insert the conductor multiple times through the probe jaws. The value of the current is the ratio of the reading to the number of turns.

Example : Figure 9
Probe Model C30
Ratio : 1000:1
DMM : Set to 200 mA AC range
Turns in Probe Jaw : 10
DMM Reading : $60 \mathrm{~mA} A C$
Current in Conductor :
$60 \mathrm{~mA} \times 1000 / 10=6000 \mathrm{~mA}=6 \mathrm{~A}$

Figure 9
When the probe is clamped around two conductors with different polarities, the resulting reading will be the difference between the two currents. If the currents are the same, the reading will be zero (Figure 10). When a reading other than zero is obtained, the reading is the amount of leakage current on the load

Figure 10

To measure low currents or leakage, you need a clamp-on which will measure low values, such as the Model B2.
Leakage current on grounds also may be measured directly with the simple model (Figure 11).

Figure 11

Example : Figure 11 MINIPINCE 1

Ratio : 1 mV AC/mA AC
DMM : Set to 200 mV AC range
DMM Reading : 10 mV AC Leakage current : 10 mA AC

SELECTING A CURRENT PROBE

A selection chart for all of the CHAUVIN ARNOUX Instruments current probes can be found at the front of this catalogue. We recommend you use the chart as a reference, then consult the more detailed catalogue pages.
Answering the following questions will help you to select the appropriate probe for your applications.

1. Determine if you are measuring $A C$ or DC (DC current probes are categorized as AC/DC because they measure both).
2. What is the the maximum current you will measure, and what is the minimum current you will measure? Check that the accuracy at low levels is appropriate, or select a low current measurement probe. Most probes perform with greater accuracy at the upper end of their range. Several probes are designed to measure very low DC or AC.
3. What size conductor will you clamp onto? This parameter determines the probe jaw size needed.
4. What type of probe output do you need or can you work with (mA, mV, $A C, D C$, etc.)? Check the maximum receiver impedance to ensure that the probe will perform to specifications.
Other factors you may want to consider :

- What is the working voltage of the conductor to be measured?
CHAUVIN ARNOUX probes must not be used above 600 volts (see specifications).
■ What type of termination do you need : jacks, leads or BNC ?
■ Will the probe be used for harmonics or power measurements ? Look at the frequency specifications and phase shift specifications.

[^0]

[^1]

Leak current measurement

Measurement on oscilloscope

asomin	MN60	$\begin{aligned} & \text { 0.1... } 60 \text { A peak } \\ & 0.5 \ldots 600 \text { A peak } \end{aligned}$	-		$\begin{aligned} & 2 \mathrm{~V} \mathrm{AC} \\ & 2 \mathrm{~V} \mathrm{AC} \end{aligned}$	-	$\begin{gathered} 1 \mathrm{~A} / 100 \mathrm{mV} \\ 1 \mathrm{~A} / 10 \mathrm{mV} \end{gathered}$		$40 \mathrm{~Hz} . .40 \mathrm{kHz}$	$\begin{gathered} \leq 2 \% \\ \leq 1.5 \% \end{gathered}$	P01.1204.09	2.05
$0 \text { mumin }$	Y7N	1 A... 1200 A peak	-		1 V AC	-	$1 \mathrm{~mA} / 1 \mathrm{mV}$		5 Hz .10 kHz	$\leq 2 \%$	P01.1200.75	3.05
-0sts	C160	$\begin{aligned} & \text { 0.1... } 30 \text { A peak } \\ & \text { 1... } 300 \text { A peak } \\ & \text { 1... } 2000 \text { A peak } \end{aligned}$	-		3 Vpeak 3 V peak 2 V peak	-	$\begin{gathered} 10 \mathrm{~A} / 1 \mathrm{~V} \\ 100 \mathrm{~A} / 1 \mathrm{~V} \\ 1000 \mathrm{~A} / 1 \mathrm{~V} \end{gathered}$		$10 \mathrm{~Hz} . .100 \mathrm{kHz}$	$\begin{aligned} & \leq 3 \% \\ & \leq 2 \% \\ & \leq 1 \% \end{aligned}$	P01.1203.08	4.08
	D38N	1... 90 A peak 1... 900 A peak 1... 9000 A peak	-		1 V AC	-	$\begin{gathered} 1 \mathrm{~A} / 10 \mathrm{mV} \\ 1 \mathrm{~A} / 1 \mathrm{mV} \\ 1 \mathrm{~A} / 0,1 \mathrm{mV} \end{gathered}$		$30 \mathrm{~Hz} . .50 \mathrm{kHz}$	$\leq 2 \%$	P01.1200.57A	5.09
	E3N	0.05... 10 A peak 1... 100 A peak	-	-	1 V peak	\bullet	$\begin{gathered} 1 \mathrm{~A} / 100 \mathrm{mV} \\ 1 \mathrm{~A} / 10 \mathrm{mV} \end{gathered}$		DC.. 100 kHz	$\begin{aligned} & \leq 3 \% \\ & \leq 4 \% \end{aligned}$	P01.1200.43A	9.02
里	PAC12	0.2... 60 A peak 0.4... 60 A DC 0.5... 600 A peak 0.5... 600 A DC	-	-	$600 \mathrm{mV} \mathrm{AC/DC}$	-	$\begin{aligned} & 1 \mathrm{~A} / 10 \mathrm{mV} \\ & 1 \mathrm{~A} / 1 \mathrm{mV} \end{aligned}$	-	DC.. 10 kHz	$\begin{aligned} & \leq 1.5 \% \\ & \leq 2 \% \end{aligned}$	P01.1200.72	10.03
\&	PAC22	0.2... 150 A peak 0.4... 150 A DC 0.5... 1400 A peak 0.5... 1400 A DC	-	\bullet	1.4 V AC/DC	-	$1 \mathrm{~A} / 10 \mathrm{mV}$ $1 \mathrm{~A} / 1 \mathrm{mV}$	-	DC..10kHz	$\begin{aligned} & \leq 1.5 \% \\ & \leq 2.5 \% \end{aligned}$	P01.1200.73	10.06

Measurement of process current

Measurement on secondary widing of current transformers

| MN7 | $10 \mathrm{~mA} \ldots 12 \mathrm{~A}$ | \bullet | | 1 VAC | \bullet | | $1 \mathrm{~A} / 100 \mathrm{mV}$ | | 40 Hz .10 kHz | $\leq 1 \%$ | P01.1204.20 | 2.09 |
| ---: | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

MINIPINCE SERIES

This line of miniature clamps has been designed for the measurement of currents as low as a few milliamps right up to 150 A AC. Their small size makes them particularly handy when working in cramped spaces such as circuit breaker boards, control boards or switch board cabinets. MINIPINCES also make very good work companions for multimeters.
There are two types of MINIPINCE available, the first acting as a traditional current transformer (with current transformation ratios of 100:1 or 1000:1), supplying an output current in the order of mA for use with multimeters, logging equipment or equipment with suitable current input ranges.
The second variety of MINIPINCE supplies an output voltage proportional to the measured current
($1 \mathrm{mV} / \mathrm{A}, 10 \mathrm{mV} / \mathrm{A}$ or $100 \mathrm{mV} / \mathrm{A}$) so that devices with AC voltage inputs may be used to measure, display and memorise currents. There is also another model that gives a DC voltage output.
MINIPINCES also make true RMS measurement possible when used in conjunction with true RMS instruments.
There are some subtle differences between the different models available in the range, MINIPINCE 1 is particularly suited to measuring very weak AC currents for example, MINIPINCE 2 is designed for the measurement of 5 A signals and MINIPINCE 5 uses special magnetic circuits to achieve a high level of precision and low phase shifting.

Clamp-on AC current probe

Current	10 A AC	100 A AC
Ouput	$1 \mathrm{mV} / \mathrm{mA}$	$1 \mathrm{mV} / \mathrm{A}$

Electrical Specification

Current Range

10 A: $1 \mathrm{~mA} . . .10 \mathrm{~A} A C$
$100 \mathrm{~A}: 1 . . .100$ A AC

Output Signal:

1 mV AC/mA AC (10 V for 10 A)
1 mV AC/A AC (100 mV for 100 A)
Accuracy (1) (\% of output signal):

- Accuracy: 1 mA... 10 A AC

45 to $65 \mathrm{~Hz}: \pm 3 \% \pm 1 \mathrm{mV}$
65 to $500 \mathrm{~Hz}: \leq 6 \% \pm 1 \mathrm{mV}$
■ Accuracy: 1... 100 A AC
45 to $65 \mathrm{~Hz}: \pm 2 \% \pm 0.5 \mathrm{mV}$
65 to $500 \mathrm{~Hz}: \leq 2 \% \pm 0.5 \mathrm{mV}$

Bandwidth:

45... 500 Hz

Load Impedance:
10 A Range: $\geq 1 \mathrm{M} \Omega$
100 A Range: $\geq 10 \mathrm{k} \Omega$

Mechanical Specification

Operating Temperature:
$-10^{\circ} \ldots 50^{\circ} \mathrm{C}$
Storage Temperature:
$-40^{\circ} \ldots 80^{\circ} \mathrm{C}$
Clamps a max. diameter of:
Max Ø 12 mm
Self-extinguishing ability:
Casing : UL 94 V0
Dimensions:
$32 \times 115 \times 22 \mathrm{~mm}$

Weight:

160 g
Colour:
Dark grey casing

Output:

Via 1.5 m lead with 4 mm banana plugs

Safety Specification

Electrical:

- double insulated device or extra insulation between the primary and secondary circuits and outer casing, in accordance with IEC 1010-1 and IEC 1010-2-032 - 30 V category III, pollution degree 2
\triangle For conductors where the voltage exceeds 30 V in relation to earth, only use the clamp if the conductors are insulated.
- 30 V max common mode between output and earth
$-3 \mathrm{kV} 50 / 60 \mathrm{~Hz}$ dielectric for 1 min

Electromagnetic Compatibility

(EC stamp):
EN 50081-1: Class B
EN 50082-2:

- Electrostatic Discharge IEC 1000-4-2
- Radial Field IEC 1000-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic Field up to $50 / 60 \mathrm{~Hz}$

IEC 1000-4-8

To Order	Reference
Clamp-on AC current probe model MINIPINCE $\mathbf{1}$ with user's manual	P01.1050.01

Model MIIIPINCE 2

Current	150 A AC
Ouput	$100 \mathrm{mV} \mathrm{DC/A}$

Electrical Specification

Current range:

1 A... 150 A AC

Output Signal:

100 mV DC/A AC (15 V for 150 A)
Accuracy (1) (\% of output signal):
1 to $5 \mathrm{~A}: \leq 10 \% \pm 20 \mathrm{mV}$
5 to 15 A: $\leq 6 \%$
15 to 150 A : $\leq 3 \%$
Load Impedance:
$\geq 50 \mathrm{k} \Omega$

Overload:

170 A DC
Bandwidth:
$70 \ldots . .400 \mathrm{~Hz}$

Mechanical Specification

Operating Temperature: $-10^{\circ} . .50^{\circ} \mathrm{C}$
Storage Temperature:
$-40^{\circ} . . .80^{\circ} \mathrm{C}$
Temperature Influence:
$<0.2 \%$ for every $10^{\circ} \mathrm{K}$
Clamps a max. diameter of:
12 mm Ø
Self-extinguishing ability:
Casing : UL 94 V0
Dimensions:
$32 \times 115 \times 22 \mathrm{~mm}$

Weight:

160 g
Colours:
Dark grey casing
Output:
Via standard 4 mm sockets

Safety Specification

Electrical:

- double insulated device or extra insulation between the primary and secondary circuits and outer casing, in accordance with IEC 1010-1 and IEC 1010-2-032 - 30 V category III, pollution degree 2
\triangle For conductors where the voltage exceeds 30 V in relation to earth, only use the clamp if the conductors are insulated.
- 30 V max common mode between output and earth
- $3 \mathrm{kV} 50 / 60 \mathrm{~Hz}$ dielectric for 1 min

Electromagnetic Compatibility

(EC stamp):
EN 50081-1: Class B
EN 50082-2:

- Electrostatic Discharge IEC 1000-4-2
- Radial Field IEC 1000-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic Field up to $50 / 60 \mathrm{~Hz}$

IEC 1000-4-8

[^2]| To Order | Reference |
| :--- | ---: |
| Clamp-on AC current probe model MINIPINCE $\mathbf{2}$ with user's manual | P01.1050.02 |

Clamp-on AC current probe Model MINIPINCE 3

Current	150 A AC
Ratio	$500 / 1$
Ouput	$2 \mathrm{~mA} / \mathrm{A}$

Electrical Specification

Current range:

0.5 A... 150 A AC

Current transformation ratio:

500/1

Output Signal:
$2 \mathrm{~mA} \mathrm{AC/A} \mathrm{AC} \mathrm{(} 300 \mathrm{~mA}$ for 150 A)

Accuracy and phase shift (1)

(\% of output signal):
$0.5 \ldots . .150 \mathrm{~A}: \leq 4 \% \pm 50 \mathrm{~mA}$

$$
\leq 10^{\circ} \pm 3^{\circ}
$$

Overload:
170 A DC
Band width:
$45 . .450 \mathrm{~Hz}$

Mechanical Specification

Operating Temperature:
$-10^{\circ} \ldots+50^{\circ} \mathrm{C}$
Storage Temperature:
$-40^{\circ} . . .80^{\circ} \mathrm{C}$
Temperature Influence:
< 0.2% for every $10^{\circ} \mathrm{K}$
Clamps a max. diameter of:
12 mm Ø
Self-extinguishing ability:
Casing : UL 94 V0
Dimensions:
$32 \times 115 \times 22 \mathrm{~mm}$

Weight:

160 g
Colour:
Dark grey casing
Output:
Via standard 4 mm sockets

Safety Specification

Electrical:

- double insulated device or extra insulation between the primary and secondary circuits and outer casing, in accordance with IEC 1010-1 and IEC 1010-2-032 - 30 V category III, pollution degree 2For conductors where the voltage exceeds 30 V in relation to earth, only use the clamp if the conductors are insulated.
- 30 V max common mode between output and earth
$-3 \mathrm{kV} 50 / 60 \mathrm{~Hz}$ dielectric for 1 min

Electromagnetic Compatibility

(EC stamp):
EN 50081-1: Class B
EN 50082-2:

- Electrostatic Discharge IEC 1000-4-2
- Radial Field IEC 1000-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic Field up to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8
(1) Reference Conditions : $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to $70 \% \mathrm{RH}$, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no DC component, no external current carrying conductor, centred test sample, load impedance 5Ω.

To Order	Reference
Clamp-on AC current probe model MINIPINCE 3 with user's manual	P01.1050.03

Clamp-on AC current probe
Model MINIPINCE 4

Current	150 A AC
Ratio	$1000 / 1$
Ouput	$1 \mathrm{~mA} / \mathrm{A}$

Electrical Specification

Current Range:

2... 150 A AC

Current transformation ratio: 1000/1

Output signal:

$1 \mathrm{~mA} \mathrm{AC/A} \mathrm{AC} \mathrm{(} 150 \mathrm{~mA}$ for 150 A)

Accuracy and Phase shift(1)

(\% of output signal):

- Accuracy: 1 mA to 10 A AC
$45 . . .65 \mathrm{~Hz} \quad: \pm 2.5 \% \pm 0.15 \mathrm{~mA}$
$65 . . .1000 \mathrm{~Hz}:+4.5 \% \pm 0.15 \mathrm{~mA}$
- Phase shift :
$\leq 10^{\circ}$ from 1 to $120 \mathrm{~A}, 50 \ldots 60 \mathrm{~Hz}$
Overload:
170 A DC
Bandwidth:
$30 . . .1000 \mathrm{~Hz}$

Load impedance:

5Ω max
Maximum tension at output :
(Secondary circuit open)
Electrical protection circuit limits tension to 20 V

Mechanical Characteristics
Operating Temperature:
$-10^{\circ} \ldots 50^{\circ} \mathrm{C}$
Storage Temperature:
$-40^{\circ} . . .80^{\circ} \mathrm{C}$
Temperature Influence:
$<0.2 \%$ for every $10^{\circ} \mathrm{K}$
Clamps a max. diameter of:
$12 \mathrm{~mm} \varnothing$
Self-extinguishing ability:
Casing: UL 94 V0
Dimensions :
$32 \times 115 \times 22 \mathrm{~mm}$

Weight:

160 g
Colours:
Dark grey casing
Output:
Via standard 4 mm sockets

Safety Specification

Electrical:

- double insulated device or extra insulation between the primary and secondary circuits and outer casing, in accordance with IEC 1010-1 and IEC 1010-2-032 - 30 V category III, pollution degree 2
\triangle For conductors where the voltage exceeds 30 V in relation to earth, only use the clamp if the conductors are insulated.
- 30 V max common mode between output and earth
- $3 \mathrm{kV} 50 / 60 \mathrm{~Hz}$ dielectric for 1 min

Electromagnetic Compatibility

(EC stamp):
EN 50081-1: Class B
EN 50082-2:

- Electrostatic Discharge IEC 1000-4-2
- Radial Field IEC 1000-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic Field up to $50 / 60 \mathrm{~Hz}$

IEC 1000-4-8
(1) Reference Conditions: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to $85 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no DC component, no external current carrying conductor, centred test sample, load impedance 1Ω.

Clamp-on AC current probe
Model MIIIPINCE 5

Current	100 A AC
Ratio	$1000 / 1$
Ouput	$1 \mathrm{~mA} / \mathrm{A}$

Electrical Specification

Current Range:

50 mA ... 100 A AC
Current transformation ratio: 1000/1
Output signal:
$1 \mathrm{~mA} \mathrm{AC} / \mathrm{A} \mathrm{AC} \mathrm{(} 100 \mathrm{~mA}$ for 100 A)
Accuracy and phase shift(1):
(\% of output signal)

- Accuracy:
$\leq 1 \% \pm 0.01 \mathrm{~mA}$
- Phase shift:
$\leq 3.5^{\circ}$ from 1 to $100 \mathrm{~A}, 50 \ldots 60 \mathrm{~Hz}$

Overload:

170 A DC

Bandwidth:

$45 \mathrm{~Hz} . .10 \mathrm{kHz}$
Load Impedance:
5Ω max
Maximum output tension:
(Secondary circuit open)
$\leq 10 \mathrm{~V}$ at 50 Hz

Mechanical Specification

Operating Temperature:
$-10^{\circ} \ldots+50^{\circ} \mathrm{C}$
Storage Temperature:
$-40^{\circ} \ldots+80^{\circ} \mathrm{C}$
Temperature Influence:
$<0.2 \%$ for every $10^{\circ} \mathrm{K}$
Clamps max. diameter of:
$12 \mathrm{~mm} \varnothing$
Self-extinguishing ability:
Casing : UL 94 V0
Dimensions:
$32 \times 115 \times 22 \mathrm{~mm}$

Weight:

160 g
Colours:
Dark grey casing
Output:
Via standard 4 mm sockets

Safety Specification

Electrical:

- double insulated device or extra insulation between the primary and secondary circuits and outer casing, in accordance with IEC 1010-1 and IEC 1010-2-032 - 30 V category III, pollution degree 2
\triangle For conductors where the voltage exceeds 30 V in relation to earth, only use the clamp if the conductors are insulated.
- 30 V max common mode between output and earth
- $3 \mathrm{kV} 50 / 60 \mathrm{~Hz}$ dielectric for 1 min

Electromagnetic Compatibility

(EC stamp):
EN 50081-1: Class B
EN 50082-2:

- Electrostatic Discharge IEC 1000-4-2
- Radial Field IEC 1000-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic Field up to $50 / 60 \mathrm{~Hz}$

IEC 1000-4-8
(1) Reference Conditions: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to $85 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field< $40 \mathrm{~A} / \mathrm{m}$, no DC component, no external current carrying conductor, centred test sample, Load impedance 1Ω.

To Order	Reference
Clamp-on AC current probe model MINIPINCE 5 with user's manual	P01.1050.05

MN Series

These ergonomic mini-clamps are designed to make light work of measuring low and medium currents from 0.01 A to 240 A AC.
The shape of the jaws makes 'hooking' onto cables easy, even in areas of restrictive access. The jaws can grip conductors up to 20 mm in diameter.
Depending on the particular model, they have one or two ranges. The output is via either jack sockets or a lead with $4 \mathrm{~mm} \varnothing$ plugs, hence these probes are compatible with all multimeters and testers on the market.

There are two types of MN series probes available. The first kind operates as a current transformer
(ratio 1000/1) and gives a current output (mA) for use with any tester with current ranges.
The second type gives a voltage output (DC or AC depending on the model) proportional to the measured current ($1,10,100$ or $1000 \mathrm{mV} / \mathrm{A}$). This voltage output means that even instruments with DC or AC voltage ranges can be used to measure currents.

There are specific models in the MN series that have been designed with particular applications in mind like measurement of current transformer outputs, on oscilloscopes and even of leakage currents.

Models MN08 and MN09

Current	200 A AC
Ratio	$1000 / 1$
Ouput	$1 \mathrm{~mA} / \mathrm{A}$

Electrical specifications
Current range :
0.5... 240 A AC

Current transformation ratio :
1000/1
Output signal :
$1 \mathrm{~mA} \mathrm{AC/A} \mathrm{AC} \mathrm{(240} \mathrm{~mA} \mathrm{at} 240 \mathrm{~A}$)

Accuracy and Phase Shift (1) :

Primary current	$0.5 \ldots 10 \mathrm{~A}$	$10 \ldots 40 \mathrm{~A}$	$40 \ldots 100 \mathrm{~A}$	$100 \ldots 240 \mathrm{~A}$
\% Accuracy of output signal	$\leq 3 \%+0.5 \mathrm{~mA}$	$\leq 2.5 \%+0.5 \mathrm{~mA}$	$\leq 2 \%+0.5 \mathrm{~mA}$	$\leq 1 \%+0.5 \mathrm{~mA}$
Phase shift	not specified	$\leq 5^{\circ}$	$\leq 3^{\circ}$	$\leq 2.5^{\circ}$

Bandwidth :

$40 \mathrm{~Hz} . .10 \mathrm{kHz}$

Crest factor :

3 for a current of 200 A rms

Max. current :

200 A continuous for a frequency $\leq 3 \mathrm{kHz}$ (limitation proportional to the inverse of one third of frequency beyond)
Load impedance :
$\leq 10 \Omega$

Working voltage :

600 V rms
Common mode voltage :
600 V category III and pollution level 2
Influence of adjacent conductor :
$\leq 15 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in the jaws :
$\leq 0.5 \%$ of output signal at $50 / 60 \mathrm{~Hz}$
Load influence :
< 0.5% on measurement
$<0.5^{\circ}$ on phase
Frequency influence (2) :
$<3 \%$ of output signal of $40 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
$<12 \%$ of output signal of $1 \mathrm{kHz} . . .10 \mathrm{kHz}$
Crest factor influence :
$<4 \%$ of output signal for a crest factor of 3 and current 200 A rms

Mechanical specifications

Operating temperature :
-10° to $+55^{\circ} \mathrm{C}$

Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$
Influence of temperature :
$\leq 0.15 \%$ of output signal per $10^{\circ} \mathrm{K}$

Working humidity :

From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$

Influence of humidity :

$<0.2 \%$ of output signal from 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening : 20 mm
Max. conductor size :
Cable : \varnothing max. 20 mm
Busbar : 1 busbar of $20 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)
Drop test :
1m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
10/55/10 Hz, 0.15 mm (IEC 68-2-6)

Self-extinguishing ability :

Case : UL94 V2
Jaws: UL 94 V0

Dimensions :

$135 \times 51 \times 30 \mathrm{~mm}$
Weight :
180 g

Colours :

Dark grey case with red jaws

Output :

- MN08 :

Safety jacks (4 mm)

- MN09 :

Double insulated 1.5 m lead with safety banana plugs (4 mm)

Safety specifications

Electrical :

Double insulated or reinforced insulation between primary, secondary and outer case according to IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility

(EMC Mark) :
EN 50081-1 : Class B
EN 50082-2 :

- Electrostatic discharge : IEC 1000-4-2
- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8

[^3]| Ordering information | Reference |
| :--- | :---: |
| AC current probe model MN08 including user's manual | P01.1204.01 |
| AC current probe model MN09 including user's manual | P01.1204.02 |

Models MN10 and MN11

Current	200 A AC
Ratio	$1000 / 1$
Ouput	$1 \mathrm{~mA} / \mathrm{A}$

A voltage electronic limiting system protects output of clamp when operating, in case of accidental opening of secondary circuit.

Electrical specifications

Current range :
0.5... 240 A AC

Transformation ratio :

1000/1
Output signal :
$1 \mathrm{~mA} \mathrm{AC/A} \mathrm{AC} \mathrm{(240} \mathrm{~mA} \mathrm{at} 240 \mathrm{~A}$)
Accuracy and Phase Shift (1):

Primary current	$0.5 \ldots . .10 \mathrm{~A}$	$10 \ldots 40 \mathrm{~A}$	$40 \ldots 100 \mathrm{~A}$	$100 \ldots 150 \mathrm{~A}$	$150 \ldots 200 \mathrm{~A}$	$200 \ldots 240 \mathrm{~A}$
\% Accuracy	$\leq 3 \%$	$\leq 2,5 \%$	$\leq 2 \%$	$\leq 1 \%$	$\leq 2 \%$	$\leq 3 \%$
of output signal	+0.5 mA					
Phase shift	not specified	$\leq 5^{\circ}$	$\leq 3^{\circ}$	$\leq 2.5^{\circ}$	$\leq 2.5^{\circ}$	$\leq 2.5^{\circ}$

Bandwidth :

$40 \mathrm{~Hz} . .10 \mathrm{kHz}$

Crest factor :

3 for a current of 200 A rms

Max. current :

200 A continuous for a frequency $\leq 3 \mathrm{kHz}$ (limitation proportional to the inverse of one third of frequency beyond)

Load impedance :

$\leq 10 \Omega$
Open secondary voltage :
Limited to 8 V peak max.
Working voltage :
600 V rms
Common mode voltage :
600 V category III and pollution level 2
Influence of adjacent conductor :
$\leq 15 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in the jaws :
$\leq 0.5 \%$ of output signal at $50 / 60 \mathrm{~Hz}$
Load influence :
< 0.5% on measurement
$<0.5^{\circ}$ on phase
Frequency influence (2) :
$<3 \%$ of output signal from $40 \mathrm{~Hz} . . .1 \mathrm{kHz}$
$<12 \%$ of output signal from $1 \mathrm{kHz} . .10 \mathrm{kHz}$

Crest factor influence :

$<4 \%$ of output signal for a crest factor of 3 and current 200 A rms

Mechanical specifications

Operating temperature :
-10° to $+55^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$
Influence of temperature :
$\leq 0.15 \%$ of output signal per $10^{\circ} \mathrm{K}$
Working humidity :
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.2% of output signal from 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
20 mm
Max. conductor size :
Cable : \varnothing max. 20 mm
Busbar : 1 busbar of $20 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)

Shock resistance :

100 g (IEC 68-2-27)
Vibrations resistance :
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ (IEC 68-2-6)
Self-extinguishing ability :
Case: UL 94 V2
Jaws: UL 94 V0

Dimensions:

$135 \times 51 \times 30 \mathrm{~mm}$

Weight :

180 g
Colours :
Dark grey case with red jaws

Output :

- MN10 :

Safety jacks (4 mm)

- MN11:

Double insulated 1.5 m lead with safety banana plugs (4 mm)

Safety specifications

Electrical :

Double insulated or reinforced insulation between primary, secondary and outer case according to IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility

(EMC Mark) :

EN 50081-1 : Class B
EN 50082-2 :

- Electrostatic discharge : IEC 1000-4-2
- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Reference conditions : $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to $70 \% \mathrm{RH}$, sinusoidal signal frequency 48 Hz to 65 Hz , external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no DC components, no external current carrying conductor, test sample centered, 1Ω load.
(2) Out of reference field.

Ordering information	Reference
AC current probe model MN10 including user's manual	P01.1204.03
AC current probe model MN11 including user's manual	P01.1204.04

Models MN12 and MN13

Current	200 A AC
Ouput	$10 \mathrm{mV} / \mathrm{A}$

Electrical specifications
Current range :
0.5... 240 A AC

Output signal :
10 mV AC/A AC (2.4 V at 240 A)

Accuracy and Phase Shift (1):

Primary current	$0.5 \ldots 10 \mathrm{~A}$	$10 \ldots 40 \mathrm{~A}$	$40 \ldots 100 \mathrm{~A}$	$100 \ldots 240 \mathrm{~A}$
Accuracy in \% of output signal	$\leq 3.5 \%+5 \mathrm{mV}$	$\leq 2.5 \%+5 \mathrm{mV}$	$\leq 2 \%+5 \mathrm{mV}$	$\leq 1 \%+5 \mathrm{mV}$
Phase shift	not specified	$\leq 5^{\circ}$	$\leq 3^{\circ}$	$\leq 2.5^{\circ}$

Bandwidth :

$40 \mathrm{~Hz} . .10 \mathrm{kHz}$

Crest factor :

3 for a current of 200 A rms

Max. current :

200 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (derating proportional to the inverse of frequency beyond)

Load impedance :

$\leq 1 \mathrm{M} \Omega$
Working voltage :
600 V rms
Common mode voltage :
600 V category III and pollution level 2
Influence of adjacent conductor : $\leq 15 \mathrm{~mA} / \mathrm{A}$ at 50 Hz

Influence of conductor position in the jaws :
$\leq 0.5 \%$ of output signal at $50 / 60 \mathrm{~Hz}$
Frequency influence (2) :
$<3 \%$ of output signal from $40 \mathrm{~Hz} . .1 \mathrm{kHz}$
$<12 \%$ of output signal from $1 \mathrm{kHz} . .10 \mathrm{kHz}$
Crest factor influence :
< 4% of output signal for a crest factor of
3 and current 200 A rms
Mechanical specifications
Operating temperature :
-10° to $+55^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$

Influence of temperature :
$\leq 0.15 \%$ of output signal per $10^{\circ} \mathrm{K}$
Working humidity:
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$

Influence of humidity :
< 0.2 \% of output signal from 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
20 mm
Max. conductor size :
Cable : \varnothing max. 20 mm
Busbar : 1 busbar of $20 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ (IEC 68-2-6)
Self-extinguishing ability :
Case: UL94 V2
Jaws: UL 94 V0

Dimensions :

$135 \times 51 \times 30 \mathrm{~mm}$
Weight :
180 g

Colours :

Dark grey case with red jaws
Output:
■ MN12 :
Safety jacks (4 mm)

- MN13 :

Double insulated 1.5 m lead with safety banana plugs (4 mm)

Safety specifications

Electrical :

Double insulated or reinforced insulation between primary, secondary and outer
case according to IEC 1010-1 \& IEC
1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility
(EMC Mark) :
EN 50081-1 : Class B
EN 50082-2 :

- Electrostatic discharge : IEC 1000-4-2
- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8

Ordering information	Reference
AC current probe model MN12 including user's manual	P01.1204.05
AC current probe model MN13 including user's manual	P01.1204.06

Models MN14 and MN15

Current	200 A AC
Ouput	$1 \mathrm{mV} / \mathrm{A}$

Electrical specifications
Current range :
0.5... 240 A AC

Output signal :
$1 \mathrm{mV} \mathrm{AC} / \mathrm{A} \mathrm{AC}$ (240 mV at 240 A)

Accuracy and Phase Shift (1):

Primary current	$0.5 \ldots 10 \mathrm{~A}$	$10 \ldots 40 \mathrm{~A}$	$40 \ldots 100 \mathrm{~A}$	$100 \ldots 240 \mathrm{~A}$
\% Accuracy of output signal	$\leq 3 \%+5 \mathrm{mV}$	$\leq 2.5 \%+5 \mathrm{mV}$	$\leq 2 \%+5 \mathrm{mV}$	$\leq 1 \%+5 \mathrm{mV}$
Phase shift	not specified	$\leq 5^{\circ}$	$\leq 3^{\circ}$	$\leq 2.5^{\circ}$

Bandwidth :

$40 \mathrm{~Hz} . .10 \mathrm{kHz}$

Crest factor :

3 for a current of 200 A rms

Max. current :

200 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse of frequency beyond)
Load impedance :
$\leq 1 \mathrm{M} \Omega$
Working voltage :
600 V rms
Common mode voltage :
600 V category III and pollution level 2
Influence of adjacent conductor :
$\leq 15 \mathrm{~mA} / \mathrm{A}$ at $50 / 60 \mathrm{~Hz}$
Influence of conductor position in the jaws :
$\leq 0.5 \%$ of output signal at $50 / 60 \mathrm{~Hz}$
Frequency influence (2):
$<3 \%$ of output signal from $40 \mathrm{~Hz} . . .1 \mathrm{kHz}$
$<12 \%$ of output signal from 1 kHz ... 10 kHz
Crest factor influence :
$<3 \%$ of output signal for a crest factor of 3 and current 200 A rms

Mechanical specifications

Operating temperature :
-10° to $+55^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$
Influence of temperature :
$\leq 0.15 \%$ of output signal per $10^{\circ} \mathrm{K}$

Working humidity :

From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.2 \% of output signal from 10% to 90% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
20 mm
Max. conductor size :
Cable: \varnothing max. 20 mm
Busbar : 1 busbar of $20 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
10/55/10 Hz, 0.15 mm (IEC 68-2-6)
Self-extinguishing ability :
Case: UL94 V2
Jaws : UL 94 V0
Dimensions :
$135 \times 51 \times 30 \mathrm{~mm}$

Weight :

180 g
Colours :
Dark grey case with red jaws

Output :

- MN14 :

Safety jacks (4 mm)
■ MN15 :
Double insulated 1.5 m lead with safety banana plugs (4 mm)

Safety specifications

Electrical :

Double insulated or reinforced insulation between primary, secondary and outer case according to IEC 1010-1 \& IEC
1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility

(EMCMark) :

EN 50081-1 : Class B
EN 50082-2 :

- Electrostatic discharge : IEC 1000-4-2
- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8 conductor, test sample centered, $1 \mathrm{M} \Omega$ load.
(2) Out of reference field

Ordering information	Reference
AC current probe model MN14 including user's manual	P01.1204.16
AC current probe model MN15 including user's manual	P01.1204.17

Model MN21

Current	200 A AC
Ratio	$1000 / 1$
Ouput	$1 \mathrm{~mA} / \mathrm{A}$

An electronic voltage limiting system protects output of clamp when operating, in case of accidental opening of secondary circuit.

Electrical specifications

Current range :

0.5... 240 A AC

Current transformation ratio :

1000/1
Output signal :
$1 \mathrm{~mA} \mathrm{AC/A} \mathrm{AC} \mathrm{(240} \mathrm{~mA} \mathrm{at} 240 \mathrm{~A}$)
Accuracy and Phase Shift (1):

Primary current	$0.1 \ldots 1 \mathrm{~A}$	$1 \ldots 20 \mathrm{~A}$	$20 \ldots 80 \mathrm{~A}$	$80 \ldots 150 \mathrm{~A}$	$150 \ldots 200 \mathrm{~A}$
$\%$ Accuracy of output signal	$\leq 2 \%$ $+20 \mu \mathrm{~A}$	$\leq 1 \%$ $+20 \mu \mathrm{~A}$	$\leq 1 \%$	$\leq 2 \%$	$\leq 4 \%$

Bandwidth :

$40 \mathrm{~Hz} . . .10 \mathrm{kHz}$

Crest factor :

5 for a current of 280 A peak

Max. current :

200 A continuous for a frequency
$\leq 3 \mathrm{kHz}$ (limitation proportional to the inverse of one third of frequency beyond)
Load impedance :
$\leq 10 \Omega$
Open secondary voltage :
Limited to 8 V peak max.

Working voltage :

600 V rms
Common mode voltage :
600 V category III and pollution level 2
Influence of adjacent conductor :
$\leq 15 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in the jaws :
$\leq 0.5 \%$ of output signal at $50 / 60 \mathrm{~Hz}$
Load influence :
< 0.5% on measurement
< 0.5° on phase
Frequency influence Ip < 150A (2):
$<5 \%$ of output signal from $40 \mathrm{~Hz} . . .1 \mathrm{kHz}$
$<15 \%$ of output signal from 1 kHz ... 10 kHz
Add 5% error if $150 \mathrm{~A}<\mathrm{lp}<200 \mathrm{~A}$

Crest factor influence :

$<3 \%$ of output signal for a crest factor < 5
to a current < 280 A peak (50 A rms)

Mechanical specifications

Operating temperature :
-10° to $+55^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$
Influence of temperature :
$\leq 0.20 \%$ of output signal per $10^{\circ} \mathrm{K}$

Working humidity :

From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
$<0.2 \%$ of output signal from 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening : 20 mm
Max. conductor size :
Cable: \varnothing max. 20 mm
Busbar: 1 busbar of $20 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)

Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
10/55/10 Hz, 0.15 mm (IEC 68-2-6)
Self-extinguishing ability :
Case : UL 94 V2
Jaws : UL 94 V0
Dimensions:
$135 \times 51 \times 30 \mathrm{~mm}$
Weight :
180 g
Colours :
Dark grey case with red jaws

Output :

Double insulated 1.5 m lead with safety banana plugs (4 mm)

Safety specifications

Electrical :

Double insulated or reinforced insulation between primary, secondary and outer case according to IEC 1010-1 \& IEC
1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility

(EMC Mark) :
EN 50081-1 : Class B
EN 50082-2 :

- Electrostatic discharge : IEC 1000-4-2
- Radiated field : IEC 1000-4-3
-Fast transients : IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$: IEC $1000-4-8$

Model MN23

Current	200 A AC
Ouput	$10 \mathrm{mV} / \mathrm{A}$

Electrical specifications

Current range :
0.1... 240 A AC

Output signal :
10 mV AC/A AC (2.4 V at 240 A)
Accuracy and Phase Shift (1):

Primary current	$0.1 \ldots 1 \mathrm{~A}$	$1 \ldots 20 \mathrm{~A}$	$20 \ldots 80 \mathrm{~A}$	$80 \ldots 150 \mathrm{~A}$	$150 \ldots 200 \mathrm{~A}$
$\%$ Accuracy of output signal	$\leq 3 \%$ $+200 \mu \mathrm{~V}$	$\leq 2 \%$ $+200 \mu \mathrm{~V}$	$\leq 1 \%$	$\leq 4 \%$	$\leq 10 \%$
Phase shift	not specified	$\leq 3^{\circ}$	$\leq 2^{\circ}$	$\leq 2.5^{\circ}$	$\leq 3.5^{\circ}$

Frequency range :

$40 \mathrm{~Hz} . .10 \mathrm{kHz}$

Crest factor :

5 for a current of 280 A peak

Max. current :

200 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse of frequency beyond)

Load impedance :

$\leq 1 \mathrm{M} \Omega$
Working voltage :
600 V rms
Common mode voltage :
600 V category III and pollution level 2
Influence of adjacent conductor :
$\leq 15 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in the jaws :
$\leq 0.5 \%$ of output signal at $50 / 60 \mathrm{~Hz}$
Frequency influence lp < 100A (2) :
$<5 \%$ of output signal from $40 \mathrm{~Hz} . . .1 \mathrm{kHz}$ **
$<15 \%$ of output signal from $1 \mathrm{kHz} . . .10 \mathrm{kHz}$
**Add 10% error if 100 <lp < 200A
Crest factor influence :
$<3 \%$ of output signal for a crest factor <5
to a current < 280 A peak (50 Arms)
Mechanical specifications
Operating temperature :
-10° to $+55^{\circ} \mathrm{C}$

Influence of temperature :
$\leq 0.20 \%$ of output signal per $10^{\circ} \mathrm{K}$
Working humidity :
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
$<0.2 \%$ of output signal from 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
20 mm
Max. conductor size :
Cable : \varnothing max. 20 mm
Busbar : 1 busbar of $20 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
10/55/10 Hz, 0.15 mm (IEC 68-2-6)
Self-extinguishing ability :
Case : UL94 V2
Jaws : UL 94 V0
Dimensions:
$135 \times 51 \times 30 \mathrm{~mm}$

Weight :

180 g

Colours :

Dark grey case with red jaws

Output :

Double insulated 1.5 m lead with safety banana plugs (4 mm)

Safety specifications :

Double insulated or reinforced insulation between primary, secondary and outer case according to IEC 1010-1 \& IEC 1010-2-032
-600 V category III, pollution level 2

- 300 V category IV, pollution level 2

Electromagnetic compatibility

(EMCMark) :

EN 50081-1 : Class B
EN 50082-2 :
-Electrostatic discharge : IEC 1000-4-2

- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic field to 50 Hz : IEC 1000-4-8

Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$

[^4]| Ordering information | Reference |
| :--- | ---: |
| AC current probe model MN23 including user's manual | P01.1204.19 |

Current	20 A AC	200 A AC
Ouput	$100 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$

Electrical specifications

Current range :

0.1... 24 A AC
0.5... 240 A AC

Output signal:

100 mV AC/A AC (2.4 V at 24 A)
10 mV AC/A AC (2.4 V at 240 A)
Accuracy and phase shift (1) :

Range	20 A	200 A			
Primary current	$0.1 \ldots 20 \mathrm{~A}$	$0.5 \ldots 10 \mathrm{~A}$	$10 \ldots 40 \mathrm{~A}$	$40 \mathrm{~A} \ldots 100 \mathrm{~A}$	$100 \ldots 240 \mathrm{~A}$
$\%$ Accuracy of output signal	$\leq 1 \%+50 \mathrm{mV}$	$\leq 3 \%+5 \mathrm{mV}$	$\leq 2.5 \%+5 \mathrm{mV}$	$\leq 2 \%+5 \mathrm{mV}$	$\leq 1 \%+5 \mathrm{mV}$
Phase shift	not specified	not specified	$\leq 5^{\circ}$	$\leq 3^{\circ}$	$\leq 2.5^{\circ}$

Bandwidth :

$40 \mathrm{~Hz} . .10 \mathrm{kHz}$

Crest factor :

3 for a current of 200 A rms
Max. currents :
200 A continuous for a frequency
$\leq 1 \mathrm{kHz}$ (Limitation proportional to
inverse frequency beyond)
Load impedance :
$>1 \mathrm{M} \Omega$
Working voltage :
600 V rms
Common mode voltage :
600 V for category III and pollution level 2
Influence of adjacent conductor :
$\leq 15 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in the jaws :
$\leq 0.5 \%$ of output signal $50 / 60 \mathrm{~Hz}$
Influence of frequency (2) :

- 20 A range :
< 5% of output signal $40 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
$<15 \%$ of output signal $1 \mathrm{kHz} . . .10 \mathrm{kHz}$
- 200 A range :
$<3 \%$ of output signal $40 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
$<12 \%$ of output signal 1 kHz ... 10 kHz
Influence of crest factor :
$<3 \%$ of output signal for a crest factor of
3 and current of 200 A rms

Mechanical specifications

Operating temperature :
-10° to $+55^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$
Influence of temperature :
$\leq 0.15 \%$ of output signal per 10 K
Working humidity :
From 0 to 85% of $R H$ with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.2% of output signal 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
20 mm
Max. conductor size :
Cable : \varnothing max 20 mm
Busbar: 1 busbar of $20 \times 5 \mathrm{~mm}$
Casing protection level :
IP 40 (IEC 529)

Drop test :

1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
10/55/10 Hz, 0.15 mm (IEC 68-2-6)

Self-extinguishing ability :

Case: UL 94 V2
Jaws : UL 94 V0
Dimensions:
$135 \times 51 \times 30 \mathrm{~mm}$
Weight :
180 g
Colours :
Dark grey case with red jaws

Ouput :

- MN38:

Safety jacks (4 mm)

- MN39 :

Insulated 1.5 m lead with safety (4 mm) banana plugs.

Safety specifications

Electrical :

Double insulated or reinforced insulation between primary, secondary and outer case according to IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution level 2
-300 V category IV, pollution level 2

Electromagnetic compatibility

(EMC Mark) :
EN 50081-1 : Class B
EN 50082-2 :

- Electrostatic discharge : IEC 1000-4-2
- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic field to 50 Hz : IEC 1000-4-8

Ordering information	Reference
AC current probe model MN38 including user's manual	P01.1204.07
AC current probe model MN39 including user's manual	P01.1204.08

Model MN60 (insulated AC current probe)

Current	60 A peak	600 A peak
Ouput	$100 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$

This 200 A AC clamp enables easy visualisation and measurement of "current" curves. It fits any oscilloscope since it has a coaxial lead with BNC plug.
It produces a mV signal directly proportional
 to current.
It offers 2 different sensitivities.

Electrical specifications

Current range :

0.1... 24 A AC (60 A peak)
0.5... 240 A AC (600 A peak)

Accuracy and phase shift (1):

Range	20 A	200 A			
Primary current	$0.1 \ldots 20 \mathrm{~A}$	$0.5 \ldots 10 \mathrm{~A}$	$10 \ldots 40 \mathrm{~A}$	$40 \mathrm{~A} \ldots 100 \mathrm{~A}$	$100 \ldots 240 \mathrm{~A}$
$\%$ Accuracy of output signal	$\leq 2 \%+50 \mathrm{mV}$	$\leq 3.5 \%+5 \mathrm{mV}$	$\leq 3 \%+5 \mathrm{mV}$	$\leq 2.5 \%+5 \mathrm{mV}$	$\leq 1.5 \%+5 \mathrm{mV}$
Phase shift	not specified	not specified	$\leq 6^{\circ}$	$\leq 4^{\circ}$	$\leq 3^{\circ}$

Output signal :

100 mV AC/A AC (2.4 V at 24 A)
$10 \mathrm{mV} \mathrm{AC} / \mathrm{A} \mathrm{AC}(2.4 \mathrm{~V}$ at 240 A$)$

Bandwidth :

$40 \mathrm{~Hz} . . .40 \mathrm{kHz}(-3 \mathrm{~dB})$ (depending on current value)

Crest factor :

3 for a current of 200 A rms
Max. currents :
200 A continuous for a frequency
$\leq 3 \mathrm{kHz}$ (limitation proportional to inverse
of one third of frequency beyond)
dl/dt max :
$10 \mathrm{~A} / \mu \mathrm{s}$
Load impedance :
$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$
Output impedance at $\mathbf{1 k H z}$:
20 A range : $\leq 20 \Omega$
200 A range $: \leq 10 \Omega$
Insertion impedance (at $50 / 60 \mathrm{~Hz}$)
$<10 \mathrm{~m} \Omega$
Ampere x second product :
0.1 As

Rise/fall time :
$\leq 40 \mu s$
Working voltage :
600 V rms
Common mode voltage :
600 V for category III and pollution level 2
Influence of adjacent conductor :
$\leq 15 \mathrm{~mA} / \mathrm{A}$ at 50 Hz

Influence of conductor position in the jaws :
$\leq 0.5 \%$ of output signal at 50 Hz
Influence of frequency (2) :

- 20 A range :
< 10% of output signal $40 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
< 15% of output signal $1 \mathrm{kHz} . . .10 \mathrm{kHz}$
- 200 A range :
< 3% of output signal $40 \mathrm{~Hz} . .1 \mathrm{kHz}$ < 12% of output signal $1 \mathrm{kHz} . . .10 \mathrm{kHz}$ Influence of crest factor:
$<3 \%$ of output signal for a crest factor of 3 with current of 200 A rms

Mechanical specifications

Operating temperature :

-10° to $+55^{\circ} \mathrm{C}$

Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$
Influence of temperature :
$\leq 0.15 \%$ of output signal per 10 K
Working humidity :
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.2% of output signal 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
20 mm

Max. conductor size :
Cable : \varnothing max 20 mm
Busbar : 1 busbar of $20 \times 5 \mathrm{~mm}$
Casing protection level :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ (IEC 68-2-6)
Self-extinguishing ability :
Case: UL 94 V2
Jaws : UL 94 V0
Dimensions :
$135 \times 51 \times 30 \mathrm{~mm}$

Weight :

180 g

Colours :

Dark grey case with red jaws

Output :

1.5 m insulated coaxial lead with safety 4 mm banana plug

Safety specifications

Electrical

Double insulated or reinforced insulation between primary, secondary and outer case according to IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility
(CE Mark) :
EN 50081-1 : Class B
EN 50082-2 :

- Electrostatic discharge : IEC 1000-4-2
- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8

Ordering information	Reference
AC current probe model MN60 for oscilloscope including user's manual	P01.1204.09

Model MN71

Current	10 A AC
Ouput	$100 \mathrm{mV} / \mathrm{A}$

This clamp was specially designed to measure current on currents transformer secondary circuits.

Electrical specifications

Current range :

$0.01 \ldots . .12$ A AC

Output signal :

100 mV AC/A AC (1.2 V at 12 A)
Accuracy and phase shift (1):

Primary current	$0.01 \ldots 0.1 \mathrm{~A}$	$0.1 \ldots 1 \mathrm{~A}$	$1 \ldots 5 \mathrm{~A}$	$5 . . .12 \mathrm{~A}$	
\% Accuracy of output signal	$\leq 3 \%$ +0.1 mV	$\leq 2.5 \%$	$\leq 1 \%$		
Phase shift	not specified	$\leq 5^{\circ}$	$\leq 3^{\circ}$	$\leq 3^{\circ}$	

Bandwidth :

$40 \mathrm{~Hz} . . .10 \mathrm{kHz}$

Crest factor :

5 for a current of 40 A peak (8 A rms)
Max. currents :
20 A continuous for a frequency $\leq 10 \mathrm{kHz}$ (limitation proportional to the inverse of the tenth of frequency beyond)
Load impedance :
$>1 \mathrm{M} \Omega$
Working voltage :
600 V rms

Common mode voltage :

600 V for category III and pollution level 2
Influence of an adjacent conductor :
$<15 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of instrument position in the jaws :
$<0.5 \%$ of output signal at $50 / 60 \mathrm{~Hz}$
Influence of frequency (2):
< 5\% of output signal $20 \mathrm{~Hz} . . .1 \mathrm{kHz}$
< 10% of output signal $1 \mathrm{kHz} . . .10 \mathrm{kHz}$

Influence of crest factor :

$<3 \%$ of output signal for crest factor < 5 with current < 40 A rms

Mechanical specifications

Working temperature :
-10° to $+55^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$
Influence of temperature :
$\leq 0.2 \%$ of output signal per 10 K
Operating humidity :
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.2% of output signal 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening : 20 mm
Max. conductor size :
Cable : \varnothing max 20 mm
Busbar : 1 busbar of $20 \times 5 \mathrm{~mm}$
Casing protection level :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
10/55/10 Hz, 0.15 mm (IEC 68-2-6)

Self-extinguishing ability :

Case: UL94 V2
Jaws : UL 94 V0

Dimensions :

$135 \times 51 \times 30 \mathrm{~mm}$

Weight :

180 g

Colours :

Dark grey case with red jaws

Output :

1.5 m insulated or reinforced insulation lead with 2 safety banana plugs (4 mm)

Safety specifications :

Electrical :

Double insulated or reinforced insulation between primary, secondary and outer case according to IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility
(CE Mark) :
EN 50081-1 : Class B
EN 50082-2 :

- Electrostatic discharge : IEC 1000-4-2
- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic field to 50 Hz : IEC 1000-4-8

Ordering information	Reference
AC current probe model MN71 including user's manual	P01.1204.20

Model MN73

Current	2 A AC	200 A AC
Ouput	$1000 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$

This clamp has a wide measurement range (up to 200 A), and it can also measure very low currents.
We call it the " universal " probe.
Electrical specifications
Current range :
$0.01 \ldots 2.4$ A AC

Output signal:
1000 mV AC/A AC (2 V at 2 A)
10 mV AC/A AC (2.4 V at 240 A)
Accuracy and phase shift (1):

Range	2 A				200 A				
Primary current	0.01...0.1 A	0.1... 1 A	1... 2 A	2 A ...2.4 A	0.1..1 A	1... 20 A	20... 80 A	80... 150	150... 200 A
\% Accuracy of output signal	$\begin{gathered} \leq 5 \% \\ +2 \mathrm{mV} \end{gathered}$	$\begin{gathered} \leq 3 \% \\ +1 \mathrm{mV} \end{gathered}$	$\leq 1 \%$	$\leq 1 \%$	$\begin{gathered} \leq 3 \% \\ +200 \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \leq 2 \% \\ +200 \mu \mathrm{~V} \end{gathered}$	$\leq 1 \%$	$\leq 4 \%$	$\leq 10 \%$
Phase shift	not specified				not specified	$\leq 3^{\circ}$	$\leq 2^{\circ}$	$\leq 3^{\circ}$	$\leq 4^{\circ}$

Bandwidth :

$40 \mathrm{~Hz} . . .10 \mathrm{kHz}$

Crest factor :

5 for a current of 280 A peak (200 A rms)

Max. currents :

200 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse frequency beyond)
Load impedance :
$>1 \mathrm{M} \Omega$
Working voltage :
600 V rms
Common mode voltage :
600 V for category III and pollution level 2
Influence of adjacent conductor :
$\leq 15 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in the jaws :
$\leq 0.5 \%$ of output signal at $50 / 60 \mathrm{~Hz}$
Frequency influence (2) :

- 2 A range :
< 10% of output signal $40 \mathrm{~Hz} . . .10 \mathrm{kHz}$
- 200 A range :
$<5 \%$ of output signal $40 \mathrm{~Hz} \ldots 1 \mathrm{kHz}{ }^{* *}$
$<15 \%$ of output signal $1 \mathrm{kHz} . .10 \mathrm{kHz}$
** add 10% error if $100 \mathrm{~A}<\mathrm{lp}<200 \mathrm{~A}$
Crest factor influence :
$<5 \%$ of output signal for a crest factor < 5
with current < 280 A rms

Mechanical specifications

Operating temperature :
-10° to $+55^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$
Influence of temperature :
$\leq 0.20 \%$ of output signal per 10 K
Working humidity :
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.2% of output signal 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening : 20 mm
Max. conductor size :
Cable : \varnothing max 20 mm
Busbar : 1 busbar of $20 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ (IEC 68-2-6)

Self-extinguishing ability :

Case: UL 94 V2
Jaws: UL 94 V0

Dimensions :

$135 \times 51 \times 30 \mathrm{~mm}$

Weight :

180 g

Colours :

Dark grey case with red jaws

Output :

Insulated or reinforced 1.5 m lead with 2 safety banana plugs (4 mm)

Safety specifications

Electrical :
Double insulated or reinforced insulation between primary, secondary and outer case according to IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility

(CE Mark) :

EN 50081-1 : Class B
EN 50082-2:

- Electrostatic discharge : IEC 1000-4-2
- Radiated field: IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic field to 50 Hz : IEC 1000-4-8

Models MN88 and MN89

Current	200 A AC
Ouput	100 mV DC/A

These clamps produce a DC voltage output which is very useful for multimeters whose sensitivity in V or A is too weak.

Electrical specifications

Current range :

0.5... 240 A AC

Output signal :
100 mV DC/A (24 V at 240 A)
Accuracy (1) :

Primary current	$0.5 \ldots 10 \mathrm{~A}$	$10 \ldots 40 \mathrm{~A}$	$40 \ldots 100 \mathrm{~A}$	$100 \ldots 240 \mathrm{~A}$
\% Accuracy of output signal	$\leq 5 \%+50 \mathrm{mV}$	$\leq 3 \%+50 \mathrm{mV}$	$\leq 2 \%+50 \mathrm{mV}$	$\leq 2 \%$

Bandwidth :

$40 \mathrm{~Hz} . .10 \mathrm{kHz}$

Crest factor :

3 for a current of 200 A rms
Max. currents :
200 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (derating proportional to the inverse of frequency and beyond)
Load impedance :
> (1 M $\Omega+$ filter RC 2 s)
Working voltage :
600 V rms
Common mode voltage:
600 V for category III and pollution level 2
Influence of adjacent conductor :
$\leq 15 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor position in the jaws :
$\leq 0.5 \%$ of output signal at 50 Hz
Frequency influence (2) :
$<5 \%$ of output signal $40 \mathrm{~Hz} \ldots 1 \mathrm{kHz}$
< 12% of output signal $1 \mathrm{kHz} . . .10 \mathrm{kHz}$

Influence of crest factor

$<3 \%$ of output signal for a crest factor of
3 with current of 200 Arms
Mechanical specifications
Working temperature :
-10° to $+55^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$

Influence of temperature :
$\leq 0.15 \%$ of output signal per 10 K
Operating humidity :
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.2% of output signal 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
20 mm
Max. conductor size :
Cable : \varnothing max 20 mm
Busbar: 1 busbar of $20 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
10/55/10 Hz, 0.15 mm (IEC 68-2-6)
Self-extinguishing ability :
Case : UL 94 V2
Jaws : UL 94 V0

Dimensions:

$135 \times 51 \times 30 \mathrm{~mm}$

Weight :

180 g

Colours :

Dark grey case with red jaws
Output :

- MN88 :

Safety jacks (4 mm)

- MN89 :
1.5 m insulated or reinforced lead with 2 safety banana plugs (4 mm)

- Safety specifications

Electrical

Double insulated or reinforced insulation between primary, secondary and outer case according to IEC 1010-1 \& IEC
1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility

(CE Mark) :

EN 50081-1 : Class B
EN 50082-2 :

- Electrostatic discharge : IEC 1000-4-2
- Radiated field: IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic field to 50 Hz : IEC 1000-4-8

Ordering information	Reference
AC current probe model MN88 including user's manual	P01.1204.10
AC current probe model MN89 including user's manual	P01.1204.15

Y Series

The Y series clamps are designed to be both rugged and versatile whilst remaining easy to use. The jaw design is such that cables are easily hooked onto and small busbars are easily gripped for current measurement up to 600 A AC.
There are two types of Y series clamp available :
The first acts as a current transformer (ratios of 100:1 or 1000:1), giving an output current that may be read by a multimeter, logging equipment or other suitable devices with current inputs in the appropriate range.

The other kind of Y series clamp has a DC voltage output proportional to the AC current measured (1 mV / A or $10 \mathrm{mV} / \mathrm{A}$), allowing instruments without current ranges to measure, display and record currents on a DC voltage range.
There is also a model available specifically for direct use with oscilloscopes.

Clamp-on AC current probe \qquad
Model Y1N

Current	600 A AC
Ratio	$1000 / 1$
Ouput	$1 \mathrm{~mA} / \mathrm{A}$

Electrical Specification
Current range:
4... 600 A AC

Current transformation ratio:

1000:1

Output signal:
$1 \mathrm{~mA} \mathrm{AC/A} \mathrm{AC}$
Accuracy (1):

Primary current	4 A	25 A	100 A	250 A	500 A	$600 \mathrm{~A}(2)$
\% Accuracy of output signal	$4.5 \%+0.5 \mathrm{~mA}$	4.5%	3.5%	3%	3%	3%
Phase shift	non-specified	4°	2°	2°	2°	2°

Bandwidth:

48... 1000 Hz

Load impedance:
5Ω max
Overload:
700 A for 10 min
Max. Tension at output (Secondary circuit open):
Electronic protection circuit limiting tension to 10 V peak max.

Working voltage:

600 Vrms
Common mode voltage:
600 Vrms
Influence of adjacent and parallel conductors:
$<30 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor positioning in jaws:
$\pm 1.5 \%$

Mechanical specification

Operating temperature:
$-15^{\circ} \ldots+50^{\circ} \mathrm{C}$
Storage temperature:
$-40^{\circ} \ldots+85^{\circ} \mathrm{C}$
Temperature Influence:
$<0.1 \%$ for every $10^{\circ} \mathrm{K}$

Operating altitude:
0 to 2000 m
Max. jaw opening:
33 mm
Max. clamp jaw insertion capacity:
Cable : $30 \mathrm{~mm} \varnothing$ max
Busbar : $63 \times 5 \mathrm{~mm}$
Casing protection:
IP20 in accordance with IEC529

Drop test:

1.5 m (IEC 68-2-32)

Mechanical shock:

100 g , in accordance with IEC 68-2-27
Vibration:
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ test in accordance with
IEC 68-2-6
Self-extinguishing ability:
UL 94V0
Dimensions:
$66 \times 195 \times 34 \mathrm{~mm}$
Weight:
420 g
Colour:
Dark grey
Output:
Via 1.5 m double-wound lead with reinforced or double insulation and two 4 mm elbowed male safety plugs

Safety Specification

Electrical:

Double or reinforced insulation between the primary and secondary circuits and the outer casing in accordance with IEC 1010-2-032.

- 600 V category III, pollution: 2
- 300 V category IV, pollution: 2

Electromagnetic Compatibility
(E.M.C.):

EN 50081-1: class B
EN 50082-2:

- Electrical discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8

Clamp-on AC current probe \qquad
Model Y2N

Current	600 A AC
Ratio	$1000 / 1$
Ouput	$1 \mathrm{~mA} / \mathrm{A}$

Electrical Specification
Current range:
4... 600 A AC

Current transformation ratio:

1000:1

Output signal:
$1 \mathrm{~mA} \mathrm{AC/A} \mathrm{AC}$
Accuracy (1):

Primary current	4 A	25 A	100 A	250 A	500 A	$600 \mathrm{~A} \mathrm{(2)}$
$\%$ Accuracy of output signal	$3 \%+0.5 \mathrm{~mA}$	3%	1.5%	1%	1%	1%
Phase shift	non-specified	3°	1.5°	1°	1°	1°

Bandwidth:

48... 1000 Hz

Load impedance:
5Ω max
Overload:
700 A for 10 min
Max. tension at output:
(Secondary circuit open):
Electronic protection circuit limiting
voltage to 10 V peak max.

Working voltage:

600 Vrms
Common mode voltage:
600 Vrms
Influence of adjacent and parallel conductors:
$<30 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor positioning in the clamp's jaws:
$<1 \%$

\square Mechanical Specification

Operating Temperature:
$-15^{\circ} \ldots+50^{\circ} \mathrm{C}$
Storage temperature:
$-40^{\circ} \ldots+85^{\circ} \mathrm{C}$
Temperature Influence:
$<0.1 \%$ for every $10^{\circ} \mathrm{K}$

Operating Altitude:
0 to 2000 m
Max. jaw opening:
33 mm
Max. clamp jaw insertion capacity :
Cable: $30 \mathrm{~mm} \varnothing$ max
Busbar: $63 \times 5 \mathrm{~mm}$
Casing protection:
IP20 in accordance with IEC529

Drop test:

1.5 m (IEC 68-2-32)

Mechanical shock:
100 g , in accordance with IEC 68-2-27
Vibration:
$10 / 55 / 10 \mathrm{~Hz}, 0,15 \mathrm{~mm}$ test in accordance with IEC 68-2-6
Self-extinguishing ability:
UL94 V0
Dimensions:
$66 \times 195 \times 34 \mathrm{~mm}$

Weight:

420 g
Colour:
Dark grey
Output:
Via 1.5 double-wound lead with reinforced or double insulation and two 4 mm elbowed safety plugs

Safety Specification

Electrical:

Double or reinforced insulation between the primary and secondary circuits and the outer casing in accordance with IEC 1010-2-032.

- 600 V category III, pollution: 2
- 300 V category IV, pollution: 2

Electromagnetic Compatibility

(E.M.C.):

EN 50081-1: class B
EN 50082-2:

- Electrical discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transits IEC 1000-4-4
- Magnetic Field to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8

Clamp-on AC current probe \qquad
Model Y3N

Current	600 A AC
Ratio	$100 / 1$
Ouput	$10 \mathrm{~mA} / \mathrm{A}$

Electrical Specification
Current range:
4... 600 A AC

Current transformation ratio:

100:1

Output ratio:

$10 \mathrm{~mA} A C / \mathrm{A} A C$
Accuracy (1):

Primary current	4 A	25 A	100 A	250 A	500 A	$600 \mathrm{~A}(2)$
$\%$ Accuracy of output signal	$5 \%+5 \mathrm{~mA}$	5%	3%	3%	3%	3%
Phase shift	non-specified	6°	5°	3°	3°	3°

Class 3 at 2.5 VA

Bandwidth:

48... 1000 Hz

Load impedance:
0.1Ω max
Overload:
700 A for 10 min
Max. tension at output
(Secondary circuit open):
Electronic circuit protection limits voltage to 10 V peak max.

Working voltage:

600 Vrms
Common mode voltage:
30 Vrms
Influence of adjacent and parallel conductors:
$<30 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor positioning
in the clamp's jaws:
$\pm 1 \%$

\square Mechanical Specification

Operating Temperature:
$-15^{\circ} \ldots+50^{\circ} \mathrm{C}$
Storage temperature:
$-40^{\circ} \ldots+85^{\circ} \mathrm{C}$
Temperature Influence:
$<0.1 \%$ for every $10^{\circ} \mathrm{K}$

Operating altitude:
0 to 2000 m
Max. clamp jaw opening:
33 mm
Max. clamp jaw insertion capacity:
Cable : $30 \mathrm{~mm} \varnothing$ max
Busbar : $63 \times 5 \mathrm{~mm}$
Casing protection:
IP20 in accordance with IEC529

Drop test:

1.5 m (IEC 68-2-32)

Mechanical shock:

100 g , in accordance with IEC 68-2-27
Vibration:
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ test in accordance with IEC 68-2-6
Self-extinguishing ability:
UL 94V0
Dimensions:
$66 \times 195 \times 34 \mathrm{~mm}$
Weight:
420 g
Colour:
Dark grey
Output:
Via 1.5 m double wound lead with reinforced or double insulation and two 4 mm elbowed male safety plugs.

Clamp-on AC current probe \qquad
Model Y4N

Current	600 A AC
Ouput	1 mV DC/A AC

Electrical Specification

Current range:

4... 600 A AC

Output signal:

1 mV DC/A AC
Accuracy (1):

Primary current	2 A	25 A	100 A	250 A	500 A	$600 \mathrm{~A} \mathrm{(2)}$
$\%$ Accuracy of output signal	$5 \%+0.5 \mathrm{mV} \mathrm{DC}$	5%	2%	1%	1%	2%

Bandwidth:

48... 1000 Hz (error : add 2% to reference)
Load impedance:
$>100 \mathrm{k} \Omega$ max

Overload:

700 A for 10 min
Working voltage:
600 Vrms
Common mode voltage:
600 Vrms
Influence of adjacent and parallel conductors:
$<30 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor positioning in the clamp's jaws:
$\pm 1 \%$

Mechanical Specification

Operating Temperature:
$-15^{\circ} \ldots+50^{\circ} \mathrm{C}$
Storage Temperature:
$-40^{\circ} \ldots+85^{\circ} \mathrm{C}$
Temperature Influence:
$<0.1 \%$ for every $10^{\circ} \mathrm{K}$
Operating Altitude:
0 to 2000 m

Max. jaw opening:
33 mm
Max. clamp jaw insertion capacity:
Cable : $30 \mathrm{~mm} \varnothing$ max
Busbar : $63 \times 5 \mathrm{~mm}$

Casing protection:

IP20 in accordance with IEC529

Drop test:

1.5 m (IEC 68-2-32)

Mechanical shock:
100 g , in accordance with IEC 68-2-27
Vibration:
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ test in accordance with IEC 68-2-6
Self-extinguishing ability:
UL 94V0
Dimensions:
$66 \times 195 \times 34 \mathrm{~mm}$

Weight:

420 g
Colour :
Dark grey
Output:
Via 1.5 m double-wound lead with double or reinforced insulation and two 4 mm elbowed male safety plugs

Safety Specification

Electrical:

Double or reinforced insulation between the primary and secondary circuits and the outer casing in accordance with IEC 1010-2-032.

- 600 V category III, pollution: 2
- 300 V category IV, pollution: 2

Electromagnetic compatibility
(E.M.C.):

EN 50081-1: class B
EN 50082-2:

- Electrical Discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$ IEC $1000-4-8$

To order	Reference
Clamp-on AC current probe model Y4N with user's manual	P01.1200.05A

Clamp-on AC current oscilloscope probe

Model Y7N (Insulated AC current probe)

Current	1200 A peak
Ouput	$1 \mathrm{mV} / \mathrm{A}$

This 500 A AC probe can be used in the display and measurement of 'current' curves.
It comes with a coaxial cable ended with a BNC plug, thus making it the ideal tool for use in conjunction with oscilloscopes. It supplies a mV output signal that is directly proportional to the measured current.

Electrical Specification

Current range:

1... 500 A rms (1200 A peak)

Output signal:
1 mV AC/A AC (500 mV to 500 A)
Accuracy and phase shift (1):

Primary current	$1 \ldots 20 \mathrm{~A}$	$20 \ldots 100 \mathrm{~A}$	$100 \ldots 500 \mathrm{~A}$
\% Accuracy of output signal	$\leq 5 \%+0.3 \mathrm{mV}$	$\leq 5 \%$	$\leq 2 \%$
Phase shift	non-specified	$\leq 3^{\circ}$	$\leq 1^{\circ}$

Bandwidth:

$5 \mathrm{~Hz} . . .10 \mathrm{kHz}$ (to -3 dB)

dV/dt:

$0.24 \mathrm{mV} / \mu \mathrm{s}$ (typical)

Maximum currents:

500 A continuous for a frequency $\leq 2 \mathrm{kHz}$ (Limitation is proportional to the inverse frequency beyond 2 KHz)
Load impedance:
$\geq 1 \mathrm{M} \Omega$ and $\leq 47 \mathrm{pF}$
Output impedance:
$\leq 100 \Omega$ and $\leq 4.7 \mathrm{nF}$
Amps.Seconds product:
15 A.s
Rise/Fall time:
Rise time to $5 \mathrm{~A}: 18 \mu \mathrm{~s}$
Fall time to $5 \mathrm{~A}: 23 \mu \mathrm{~s}$
Working voltage:
600 V rms
Influence of an adjacent conductor:
$\leq 5 \mu \mathrm{~V} / \mathrm{A} \mathrm{AC}$ at 50 Hz

Mechanical Specification

Operating Temperature:
-30° to $+50^{\circ} \mathrm{C}$
Storage temperature:
-50° to $+80^{\circ} \mathrm{C}$

Temperature Influence:

$\leq 0.15 \%$ of output signal per 10 K
Operating Relative Humidity:
From 0 to 85% RH with a linear decrease above $35^{\circ} \mathrm{C}$
Operating Altitude:
0 to 2000 m
Clamp jaw insertion capacity:
Cable: $30 \mathrm{~mm} \varnothing$ max
Busbar: 1 busbar of $63 \times 5 \mathrm{~mm}$
Casing Protection:
IP 20 (IEC 529)
Drop test:
1.5m (IEC 68-2-32)

Mechanical Shock:

100 g (IEC 68-2-27)
Vibration:
10/55/10 Hz 0.15 mm (IEC 68-2-6)
Self-extinguishing ability:
UL94V0
Dimensions:
$66 \times 195 \times 34 \mathrm{~mm}$

Weight:

420 g
Colours:
Dark grey

Output:
Via 2 m coaxial cable ended with insulated BNC plug

Safety Specification

Electrical:

Double or reinforced device insulation between the primary and secondary circuits and the outer casing in accordance with IEC 1010-1 \& IEC 1010-2-032
-600V category III, pollution degree 2

- 300V category IV, pollution degree 2

Electromagnetic Compatibility
(E.M.C.):

EN 50081-1: Class B
EN 50082-2:

- Electrostatic Discharge: IEC 1000-4-2
- Radial Field: IEC 1000-4-3
- Rapid Transients: IEC 1000-4-4
- Magnetic Field to $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Reference Conditions: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 0$ to $75 \% \mathrm{RH}$, sinusoidal signal, Frequency from 45 to 65 Hz , no DC component, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no AC magnetic field, centred test sample.

To order	Reference
Clamp-on AC current oscilloscope probe model Y7N with user's manual	P01.1200.75

Current clamps for AC currents

"C 100 "Series

The " C100 " series is a range of thirteen transformer clamps having all the advantages of our old " C30 " series clamps whilst incorporating considerable improvements, particularly in the field of safety, ergonomics and performance:
■ 1000 A measurement, excellent metrology, high accuracy, hight level of linearity, symmetrical coil windings for minimum phase shift, pendular adjusting system for magnetic elements, maximum conductor diameter $\varnothing 52 \mathrm{~mm}$ and also some models with μ metal core specially made for wattmeter use.

- Innovative design, its shape is very ergonomic, handle with finger grips, assisted opening system for jaws (patented system).

■ Safety standards IEC 1010 600V cat. III (industry and services), anti-slipping protection, conductor antipinching system,...
All this unparalleled technology and quality of manufacturing to get the best measurement possible without any complications.
A " C100" series clamp is compatible with any instrument (multimeter, wattmeter, recorder, oscilloscope...) to measure perfectly any AC currents, both safely and without breaking the circuit.

Current clamp for AC currents
Model C100

Current	1000 A
Ratio	$1000: 1$
Ouput	$1 \mathrm{~mA} / \mathrm{A}$

Electrical specifications
Current range :
0.1 A... 1200 A AC

Current transformation ratio

1000:1

Output signal :
$1 \mathrm{~mA} \mathrm{AC/A} \mathrm{AC} \mathrm{(1A} \mathrm{at} 1000 \mathrm{~A}$)
Accuracy and phase shift (1):

Primary current	$0.1 \ldots 10 \mathrm{~A}$	10 A	$50 \mathrm{~A}^{(2)}$	$200 \mathrm{~A}^{(2)}$	$1000 \mathrm{~A}^{(2)}$	$1200 \mathrm{~A}^{(2)}$
\% Accuracy of output signal	$\leq 3 \%+0.1 \mathrm{~mA}$	$\leq 3 \%$	$\leq 1.5 \%$	$\leq 0.75 \%$	$\leq 0.5 \%$	$\leq 0.5 \%$
Phase shift	not specified	$\leq 3^{\circ}$	$\leq 1.5^{\circ}$	$\leq 0.75^{\circ}$	$\leq 0.5^{\circ}$	$\leq 0.5^{\circ}$

Bandwidth :

$30 \mathrm{~Hz} . . .10 \mathrm{kHz}(-3 \mathrm{~dB})$

Crest factor :

≤ 6 for a current ≤ 3000 A peak
(500 A rms)

Max. currents :

1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse of frequency beyond) 1200 A for 40 min max. (pause between measurement > 20 min)
Load impedance :
$\leq 15 \Omega$
Working voltage :
600 V rms
Common mode voltage :
600 V for category III and pollution level 2
Influence of adjacent conductor :
$\leq 1 \mathrm{~mA} / \mathrm{A}$ to 50 Hz
Influence of conductor position in the jaws :
$\leq 0.1 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$
Load influence : from 5Ω to 15Ω
< 0.5% on measurement
< 0.5° on phase
Frequency influence (3):
< 1% of output signal $30 \mathrm{~Hz} . . .48 \mathrm{~Hz}$
$<0.5 \%$ of output signal $65 \mathrm{~Hz} . . .1 \mathrm{kHz}$
< 1% of output signal $1 \mathrm{kHz} . . .5 \mathrm{kHz}$
Influence of crest factor :
$<1 \%$ of output signal for crest factor ≤ 6 with current ≤ 3000 A peak (500 A rms)

Influence of DC current superposed on nominal current :
$<1 \%$ of output signal
for a current ≤ 30 A DC

Mechanical specifications

Operating temperature :
-10° to $+50^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$
Temperature influence :
$\leq 0.1 \%$ of output signal per 10 K
Operating humidity :
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.1% of output signal 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
53 mm
Patented progressive opening system
Max. conductor size :
-Cable : \varnothing max 52 mm
-Busbar : 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbar of $30 \times 5 \mathrm{~mm}$

Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)

Vibration resistance :
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}-15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}-25 / 55 \mathrm{~Hz}$ 0.25 mm (IEC 68-2-6)

Self-extinguishing ability :
Case and jaws : UL94 V0

Dimensions :

$216 \times 111 \times 45 \mathrm{~mm}$

Weight :

550 g

Colours :

Dark grey case with red jaws
Output :
Safety jacks (4 mm)

Safety specifications

Electrical :

Instrument with double insulation or reinforced insulation between primary, secondary and outer case parts to be handled CEI 1010-1 \& CEI 1010-2-032

- 600V category III, pollution level 2
- 300V category IV, pollution level 2

Electromagnetic compatibility (CE Mark.) :
EN 50081-1 : Class B
EN 50082-2:

- Electrostatic discharge : IEC 1000-4-2
- Radiated field : IEC 1000-4-3
-Fast transients : IEC 1000-4-4
- Magnetic fields $50 / 60 \mathrm{~Hz}$: IEC $1000-4-8$

Models C102 and C103

Current	1000 A
Ratio	$1000: 1$
Ouput	$1 \mathrm{~mA} / \mathrm{A}$

An electronic voltage limiter protects the output of the clamp, in case of accidental opening of secondary circuit.

Electrical specifications

Current range :
0.1 A... 1200 A AC

Current transformation ratio :

1000:1

Output signal :

$1 \mathrm{~mA} \mathrm{AC/A} \mathrm{AC} \mathrm{(} 1 \mathrm{~A}$ at 1000 A)
Accuracy and phase shift (1):

Primary current	$0.1 \ldots 10 \mathrm{~A}$	10 A	$50 \mathrm{~A}{ }^{(2)}$	$200 \mathrm{~A}^{(2)}$	$1000 \mathrm{~A}{ }^{(2)}$	$1200 \mathrm{~A}^{(2)}$
$\%$ Accuracy of output signal	$\leq 3 \%+0.1 \mathrm{~mA}$	$\leq 3 \%$	$\leq 1.5 \%$	$\leq 0.75 \%$	$\leq 0.5 \%$	$\leq 0.5 \%$
Phase shift	not specified	$\leq 3^{\circ}$	$\leq 1.5^{\circ}$	$\leq 0.75^{\circ}$	$\leq 0.5^{\circ}$	$\leq 0.5^{\circ}$

Bandwidth :

$30 \mathrm{~Hz} . . .10 \mathrm{kHz}$ (-3 dB)

Crest factor :

≤ 6 for a current ≤ 3000 A peak
(500 A rms)
Max. currents :
1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse of frequency beyond)
1200 A for 40 min max. (pause between measurement > 20 min)
Load impedance :
$\leq 15 \Omega$
Max. voltage at output :
Electronic limiter 30V max. peak
Working voltage :
600 V rms
Common mode voltage :
600 V for category III and pollution level 2
Influence of adjacent conductor :
$\leq 1 \mathrm{~mA} / \mathrm{A}$ to 50 Hz
Influence of conductor position in the jaws :
$\leq 0.1 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$
Load influence : from 5Ω to 15Ω
< 0.5% on measurement
$<0.5^{\circ}$ on phase
Frequency influence (3):
< 1% of output signal $30 \mathrm{~Hz} . . .48 \mathrm{~Hz}$
< 0.5% of output signal $65 \mathrm{~Hz} . . .1 \mathrm{kHz}$
< 1% of output signal $1 \mathrm{kHz} . . .5 \mathrm{kHz}$
Influence of crest factor :
$<1 \%$ of output signal for crest factor ≤ 6
with current ≤ 3000 A peak (500 A rms)

Influence of DC current superposed on nominal current :
$<1 \%$ of output signal for a current $\leq 30 \mathrm{ADC}$

Mechanical specifications

Operating temperature :
-10° to $+50^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$
Temperature influence :
$\leq 0.1 \%$ of output signal per 10 K
Operating humidity :
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.1% of output signal 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
53 mm
Patented progressive opening system
Max. conductor size:
-Cable : \varnothing max 52 mm
-Busbar : 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)

Vibration resistance :
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}-15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$ (IEC 68-2-6)

Self- extinguishing ability :

Case and jaws : UL94 V0

Dimensions:

$216 \times 111 \times 45 \mathrm{~mm}$

Weight :

550 g

Colours :

Dark grey case with red jaws
Output :

- C102 :

Safety jacks (4 mm)

- C103 :
1.5 m insulated lead with two elbowed safety plugs (4 mm).

\square Safety specifications

Electrical :

Instrument with double insulation or reinforced insulation between primary, secondary and outer case parts to be handled CEI 1010-1 \& CEI 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility (CE

Mark.) :

EN 50081-1 : Class B
EN 50082-2 :
-Electrostatic discharge : IEC 1000-4-2

- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic fields $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Reference conditions: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}$, sinusoidal signal, frequency of 48 Hz to 65 Hz , distortion factor $<1 \%$, no DC component, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no AC magnetic field, centered tested sample, load impedance 5Ω (5VA)
(2) Accuracy class according to IEC $185: 5 \mathrm{VA}$ - class $0.5-48 \ldots 65 \mathrm{~Hz}$ (3) Out of frequency field.

Ordering information	Reference
AC current clamp model C102 with user's manual	P01.1203.02
AC current clamp model C103 with user's manual	P01.1203.03

Models C106 and C107

Current	1000 A
Ouput	$1 \mathrm{mV} / \mathrm{A}$

Electrical specifications

Current range :

0.1 A... 1200 A AC

Output signal :
$1 \mathrm{mV} \mathrm{AC} / \mathrm{A} \mathrm{AC}$ (1 V at 1000 A)

Accuracy and phase shift (1):

Primary current	$0.1 \ldots 10 \mathrm{~A}$	10 A	$50 \mathrm{~A}^{(2)}$	$200 \mathrm{~A}^{(2)}$	$1000 \mathrm{~A}^{(2)}$	$1200 \mathrm{~A}^{(2)}$
\% Accuracy of output signal	$\leq 3 \%+0.1 \mathrm{mV}$	$\leq 3 \%$	$\leq 1.5 \%$	$\leq 0.75 \%$	$\leq 0.5 \%$	$\leq 0.5 \%$
Phase shift	not specified	$\leq 3^{\circ}$	$\leq 1.5^{\circ}$	$\leq 0.75^{\circ}$	$\leq 0.5^{\circ}$	$\leq 0.5^{\circ}$

Bandwidth :

$30 \mathrm{~Hz} . .10 \mathrm{kHz}$

Crest factor :

≤ 6 for a current ≤ 3000 A peak (500 A rms)

Max. currents :

1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse of frequency beyond)
1200 A for 40 min max. (pause between measurement > 20 min)

Output impedance :

$1 \Omega \pm 1 \%$
Load impedance :
$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$
Working voltage :
600 V rms
Common mode voltage :
600 V for category III and pollution level 2
Influence of adjacent conductor :
$\leq 1 \mu \mathrm{~V} / \mathrm{A}$ to 50 Hz
Influence of conductor position in the jaws :
$\leq 0.1 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$
Load influence :
On receiver, for an input impedance of $100 \Omega: \leq 1 \%$ on measurement, no measurement on phase.
On receiver, for an input impedance of $1 \mathrm{k} \Omega: \leq 0.1 \%$ on measurement, no measurement on phase.
Frequency influence (2):
$<1 \%$ of output signal $30 \mathrm{~Hz} . .48 \mathrm{~Hz}$
$<0.5 \%$ of output signal $65 \mathrm{~Hz} . . .1 \mathrm{kHz}$
$<1 \%$ of output signal $1 \mathrm{kHz} . .5 \mathrm{kHz}$

Influence of crest factor :

$<1 \%$ of output signal for crest factor ≤ 6 with current ≤ 3000 A peak (500 A rms)
Influence of DC current superposed on nominal current :
$<1 \%$ of output signal for a current $\leq 30 \mathrm{ADC}$

Mechanical specifications

Operating temperature :
-10° to $+50^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$
Temperature influence :
$\leq 0.1 \%$ of output signal per 10 K
Operating humidity:
From 0 to 85% of $R H$ with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.1% of output signal 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
53 mm
Patented progressive opening system
Max. conductor size :
-Cable : \varnothing max. 52 mm
-Busbar : 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)

Vibration resistance :

$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}-15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$ (IEC 68-2-6)
Self-extinguishing ability :
Case and jaws : UL94 V0

Dimensions :

$216 \times 111 \times 45 \mathrm{~mm}$
Weight :
550 g
Colours :
Dark grey case with red jaws
Output :
-C106
Safety jacks (4 mm)
-C107
1.5 m insulated lead with two elbowed safety plugs (4 mm).

Safety specifications

Electrical :

Instrument with double insulation or reinforced insulation between primary, secondary and outer case parts to be handled CEI 1010-1 \& CEI 1010-2-032

- 600 V category III, pollution level 2
- 300V category IV, pollution level 2

Electromagnetic compatibility (CE
Mark.) :
EN 50081-1 : Class B
EN 50082-2:
-Electrostatic discharge : IEC 1000-4-2

- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic fields $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Reference conditions : $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}$, sinusoidal signal, frequency of 48 Hz to 65 Hz , distortion factor < 1%, no DC component, external magnetic field < $40 \mathrm{~A} / \mathrm{m}$, no AC magnetic field, centered tested sample
(2) Out of reference field

Ordering information	Reference
AC current clamp model C106 including user's manual	P01.1203.04
AC current clamp model C107 including user's manual	P01.1203.05

Models C112 and C113

Current	1000 A
Ratio	$1000: 1$
Ouput	$1 \mathrm{~mA} / \mathrm{A}$

Thanks to their excellent technical performance (phase shift and linearity), these core clamps in μ metal are highly recommended for wattmeter use.
These clamps are protected at output against over voltages.

Electrical specifications

Current range :

0.001 A... 1200 A AC

Current transformation ratio :
1000:1
Output signal :
$1 \mathrm{~mA} \mathrm{AC} / \mathrm{A} \mathrm{AC}$ (1A at 1000 A)
Accuracy and phase shift (1) :

Primary current	$1 \ldots . .100 \mathrm{~mA}$	$0.1 \ldots 1 \mathrm{~A}$	$1 \ldots 10 \mathrm{~A}$	$10 \ldots 100 \mathrm{~A}$	$100 \ldots 1200 \mathrm{~A}$
\% Accuracy of ouput signal	$\leq 3 \%$ $+5 \mu \mathrm{~A}$	$\leq 2 \%$ $+3 \mu \mathrm{~A}$	$\leq 1 \%$	$\leq 0.5 \%$	$\leq 0.3 \%$
Phase shift	not specified	not specified	$\leq 2^{\circ}$	$\leq 1^{\circ}$	$\leq 0.7^{\circ}$

Bandwidth :

$30 \mathrm{~Hz} . .10 \mathrm{kHz}$

Crest factor :

≤ 6 for a current ≤ 2000 A peak
(300 A rms)
Max. currents :
1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse of frequency beyond)
1200 A for 40 min max. (pause between measurement > 20 min)
Load impedance :
$\geq 1 \Omega$
Max. output voltage :
Electronic limiter 30 V peak max.
Working voltage :
600 V rms
Common mode voltage :
600 V for category III and pollution level 2
Influence of adjacent conductor :
$\leq 0.5 \mathrm{~mA} / \mathrm{A}$ to 50 Hz
Influence of conductor position in the jaws :
$\leq 0.1 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$
Load influence : from 1Ω to 5Ω
<0.1\% on measurement
$<0.2^{\circ}$ on phase
Frequency influence (2):
$<0.5 \%$ of output signal 30 Hz ... 48 Hz
< 1% of output signal 65 Hz ... 1 kHz
$<2 \%$ of output signal 1 kHz ... 5 kHz

Influence of crest factor :
$<1 \%$ of output signal for crest factor ≤ 6 with current ≤ 2000 A peak (300 A rms)
Influence of DC current superposed on nominal current :
$<1 \%$ of output signal for a current ≤ 15 A DC

- Mechanical specifications

Operating temperature :
-10° to $+50^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$
Temperature influence :
$\leq 0.2 \%$ of output signal per 10 K
Operating humidity:
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.1% of output signal 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
53 mm
Patented progressive opening system
Max. conductor size :
-Cable : \varnothing max 52 mm
-Busbar : 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)

Drop test :

1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}-15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$ (IEC 68-2-6)
Self-extinguishing ability :
Case and jaws : UL94 V0
Dimensions:
$216 \times 111 \times 45 \mathrm{~mm}$
Weight :
550 g
Colours :
Dark grey case with red jaws

Output :

-C112 : safety jacks (4 mm)
-C113: 1.5 m insulated lead with two elbowed safety plugs (4 mm).

Safety specifications

Electrical :

Instrument with double insulation or reinforced insulation between primary, secondary and outer case parts to be handled CEI 1010-1 \& CEI 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility
(CE Mark.) :
EN 50081-1 : Class B
EN 50082-2 :

- Electrostatic discharge : IEC 1000-4-2
- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic fields $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Reference conditions : $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}$, 20 to $75 \% \mathrm{RH}$, sinusoidal signal, frequency of 48 Hz to 65 Hz , distortion factor < 1%, no DC component, external magnetic field < $40 \mathrm{~A} / \mathrm{m}$, no AC magnetic field, centered tested sample, load impedance 1Ω (1 VA)
(2) Out of reference field

Ordering information	Reference
AC current clamp model C112 user's instruction manual	P01.1203.14
AC current clamp model C113 user's instruction manual	P01.1203.15

Models C116 and C117

Current	1000 A
Ouput	$1 \mathrm{mV} / \mathrm{A}$

Thanks to their excellent technical performance (phase shift and linearity), these core clamps in μ metal are highly recommended for wattmeter use.

Electrical specifications
Current range :
0.001 A... 1200 A AC

Output signal :
$1 \mathrm{mV} \mathrm{AC} / \mathrm{A} \mathrm{AC}$ (1 V at 1000 A)
Accuracy and phase shift (1):

Primary current	$1 \ldots 100 \mathrm{~mA}$	$0.1 \ldots 1 \mathrm{~A}$	$1 \ldots 10 \mathrm{~A}$	$10 \ldots 100 \mathrm{~A}$	$100 \ldots 1200 \mathrm{~A}$
\% Accuracy of ouput signal	$\leq 3 \%$ $+5 \mu \mathrm{~V}$	$\leq 2 \%$ $+3 \mu \mathrm{~V}$	$\leq 1 \%$	$\leq 0.5 \%$	$\leq 0.3 \%$
Phase shift	not specified	not specified	$\leq 2^{\circ}$	$\leq 1^{\circ}$	$\leq 0.7^{\circ}$

Bandwidth :

$30 \mathrm{~Hz} . .10 \mathrm{kHz}$

Crest factor :

≤ 6 for a current ≤ 2000 A peak
(300 A rms)

Max. currents :

1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse of frequency beyond)
1200 A for 40 min max. (pause between measurement > 20 min)

Output impedance :

$1 \Omega \pm 1 \%$
Load impedance :
$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$
Working voltage :
600 V rms

Common mode voltage :

600 V for category III and pollution level 2
Influence of adjacent conductor :
$\leq 0.5 \mathrm{~mA} / \mathrm{A}$ to 50 Hz
Influence of conductor position in the jaws :
$\leq 0.1 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$

Load influence :

On receiver, for an input impedance of $100 \Omega: \leq 1 \%$ on measurement, no measurement on phase.
On receiver, for an input impedance of $1 \mathrm{k} \Omega$: $\leq 0.1 \%$ on measurement, no measurement on phase.
Frequency influence (2):
< 0.5% of output signal $30 \mathrm{~Hz} . . .48 \mathrm{~Hz}$
< 1% of output signal $65 \mathrm{~Hz} . . .1 \mathrm{kHz}$
$<2 \%$ of output signal $1 \mathrm{kHz} . . .5 \mathrm{kHz}$

Influence of crest factor :

$<1 \%$ of output signal for crest factor ≤ 6 with current ≤ 2000 A peak (300 A rms)
Influence of DC current superposed on nominal current :
$<1 \%$ of output signal for a current $\leq 15 \mathrm{ADC}$

Mechanical specifications

Operating temperature :
-10° to $+50^{\circ} \mathrm{C}$

Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$
Temperature influence :
$\leq 0.2 \%$ of output signal per 10 K
Operating humidity:
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.1% of output signal 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
53 mm
Patented progressive opening system

Max. conductor size :

-Cable : \varnothing max 52 mm
-Busbar: 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$

Casing protection :

IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)

Vibration resistance :

$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}-15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$ $25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$ (IEC 68-2-6)

Self-extinguishing ability :

Case and jaws : UL94 V0

Dimensions :

$216 \times 111 \times 45 \mathrm{~mm}$

Weight :

550 g
Colours :
Dark grey case with red jaws

Output :

-C116
Safety jacks (4 mm)
-C117
1.5 m insulated lead with two elbowed safety plugs (4 mm).

Safety specifications

Electrical :

Instrument with double insulation or reinforced insulation between primary, secondary and outer case parts to be handled CEI 1010-1 \& CEI 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility
(CE Mark.) :
EN 50081-1 : Class B
EN 50082-2 :
-Electrostatic discharge : IEC 1000-4-2

- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic fields $50 / 60 \mathrm{~Hz}$: IEC $1000-4-8$

Ordering information	Reference
AC current clamp model C116 including user's manual	P01.1203.16
AC current clamp model C117 including user's manual	P01.1203.17

Current clamp for AC currents
Model C122

Current	1000 A
Ratio	$1000: 5$
Ouput	$5 \mathrm{~mA} / \mathrm{A}$

An electronic voltage limiter protects the output of the clamp, in case of accidental opening of secondary circuit.

Electrical specifications

Current range :

1 A... 1200 A AC
Current transformation ratio :
1000:5
Output signal :
$5 \mathrm{~mA} \mathrm{AC} / \mathrm{A} \mathrm{AC}$ (5 A at 1000 A)
Accuracy and phase shift (1):

Primary current	$1 \ldots 20 \mathrm{~A}$	20 A	$50 \mathrm{~A}{ }^{(2)}$	$200 \mathrm{~A}^{(2)}$	$1000 \mathrm{~A}^{(2)}$	$1200 \mathrm{~A}{ }^{(2)}$
$\%$ Accuracy output signal	$\leq 6 \%+0.5 \mathrm{~mA}$	$\leq 5 \%$	$\leq 3 \%$	$\leq 1.5 \%$	$\leq 1 \%$	$\leq 1 \%$
Phase shift	not specified	$\leq 5^{\circ}$	$\leq 3^{\circ}$	$\leq 1.5^{\circ}$	$\leq 1^{\circ}$	$\leq 1^{\circ}$

Bandwidth :

$30 \mathrm{~Hz} . . .10 \mathrm{kHz}$

Crest factor :

≤ 6 for a current ≤ 3000 A peak
(500 A rms)
Max. currents :
1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse of frequency beyond)
1200 A for 30 min max (pause between measurement > 15 min)
Load impedance :
$\leq 0.6 \Omega$
Impedance of connection leads : $\leq 40 \mathrm{~m} \Omega$
Open secondary voltage :
Electronic limiter 30 V peak max

Working voltage :

600 V rms
Common mode voltage :
600 V for category III and pollution level 2
Influence of adjacent conductor : $\leq 1 \mathrm{~mA} / \mathrm{A}$ to 50 Hz
Influence of conductor position in the jaws :
$\leq 0.2 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$
Load influence : from 0.2Ω to 0.6Ω
< 0.5% on measurement
$<0.5^{\circ}$ on phase
Frequency influence (3):
< 1% of output signal $30 \mathrm{~Hz} . . .48 \mathrm{~Hz}$
< 0.5% of output signal $65 \mathrm{~Hz} . . .1 \mathrm{kHz}$
< 1% of output signal $1 \mathrm{kHz} . . .5 \mathrm{kHz}$

Influence of crest factor :
$<1 \%$ of output signal for a crest factor ≤ 6 with current ≤ 3000 A peak (500 A rms)

Influence of a DC current

superposed on nominal current :
$<1 \%$ of output signal for a current $\leq 30 \mathrm{ADC}$

Mechanical specifications

Working temperature :
-10° to $+50^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$
Temperature influence :
$\leq 0.1 \%$ of output signal per 10 K
Operating humidity :
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.2% of output signal 10% to 85% of RH
Operating altitude :
0 to 2000 m
Max. jaws opening :
53 mm
Patented progressive opening system

Max. conductor size :

-Cable : \varnothing max 52 mm
-Busbar : 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)

Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}-15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$ (IEC 68-2-6)
Self-extinguishing ability :
Case and jaws : UL94 V0
Dimensions :
$216 \times 111 \times 45 \mathrm{~mm}$
Weight :
550 g
Colours :
Dark grey case with red jaws

Output :

Safety jacks (4 mm)

Safety specifications

Electrical :

Instrument with double insulation or reinforced insulation between primary, secondary and outer case parts to be handled CEI 1010-1 \& CEI 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility
(CE Mark.) :
EN 50081-1 : Class B
EN 50082-2 :
-Electrostatic discharge : IEC 1000-4-2

- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic fields $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Reference conditions : $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}$, sinusoidal signal, frequency of 48 Hz to 65 Hz , distortion factor $<1 \%$, no DC component, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no Reference conditions : $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to 75% RH, sinusoidal signal, frequ
AC magnetic field, centered tested sample, load impedance 0.2Ω (5VA)

| (2) Accuracy class according to IEC $185: 5 \mathrm{VA}$ - class $1-48 \ldots 65 \mathrm{~Hz}$ | (3) Out of reference field |
| :--- | :--- | :--- |

Ordering information	Reference
AC current clamp model C122 including user's manual	P01.1203.06

Current clamp for AC currents
Model C148

Current	250 A AC	500 A AC	1000 A AC
Ratio	$250: 5$	$500: 5$	$1000: 5$
Ouput	$20 \mathrm{~mA} / \mathrm{A}$	$10 \mathrm{~mA} / \mathrm{A}$	$5 \mathrm{~mA} / \mathrm{A}$

An electronic voltage limiter protects the output of the clamp, in case of accidental opening of secondary circuit.

Electrical specifications
Current range :
1 A... 300 A AC
1 A... 600 A AC
1 A... 1200 A AC

Current transformation ratios :

250:5
500:5
1000:5

Output signal :
$20 \mathrm{~mA} A C / \mathrm{AC}$ (5 A at 250 A)
$10 \mathrm{~mA} \mathrm{AC} / \mathrm{A} \mathrm{AC}(5 \mathrm{~A}$ at 500 A$)$
$5 \mathrm{~mA} \mathrm{AC} / \mathrm{A} \mathrm{AC}(5 \mathrm{~A}$ at 1000 A$)$
Accuracy and phase shift (1):

- 250 A range

Primary current	$1 \ldots 5 \mathrm{~A}$	5 A	$12.5 \mathrm{~A}^{(2)}$	$50 \mathrm{~A}^{(2)}$	$250 \mathrm{~A}^{(2)}$	$300 \mathrm{~A}^{(2)}$
$\%$ Accuracy of output signal	$\leq 10 \%+2 \mathrm{~mA}$	$\leq 10 \%$	$\leq 5 \%$	$\leq 2.5 \%$	$\leq 2 \%$	$\leq 2 \%$
Phase shift	not specified	not specified	$\leq 10^{\circ}$	$\leq 10^{\circ}$	$\leq 10^{\circ}$	$\leq 10^{\circ}$

- 500 A range

Primary current	$1 \ldots 10 \mathrm{~A}$	10 A	$25 \mathrm{~A}^{(3)}$	$100 \mathrm{~A}^{(3)}$	$500 \mathrm{~A}^{(3)}$	$600 \mathrm{~A}^{(3)}$
$\%$ Accuracy of output signal	$\leq 6 \%+1 \mathrm{~mA}$	$\leq 6 \%$	$\leq 3 \%$	$\leq 2 \%$	$\leq 1 \%$	$\leq 1 \%$
Phase shift	not specified	$\leq 6^{\circ}$	$\leq 4^{\circ}$	$\leq 3^{\circ}$	$\leq 2.5^{\circ}$	$\leq 2.5^{\circ}$

- 1000 A range

Primary current	$1 \ldots 20 \mathrm{~A}$	20 A	$50 \mathrm{~A}{ }^{(4)}$	$200 \mathrm{~A}^{(4)}$	$1000 \mathrm{~A}{ }^{(4)}$	$1200 \mathrm{~A}^{(4)}$
$\%$ Accuracy of output signal	$\leq 6 \%+0.5 \mathrm{~mA}$	$\leq 5 \%$	$\leq 3 \%$	$\leq 1.5 \%$	$\leq 1 \%$	$\leq 1 \%$
Phase shift	not specified	$\leq 5^{\circ}$	$\leq 3^{\circ}$	$\leq 1.5^{\circ}$	$\leq 1^{\circ}$	$\leq 1^{\circ}$

Bandwidth :

$48 \mathrm{~Hz} . . .1 \mathrm{kHz}$

Crest factor :

- 250 A range :
≤ 6 with current ≤ 750 A peak
- 500 A range :
≤ 6 with current ≤ 1500 A peak
- 1000 A range :
≤ 6 with current ≤ 3000 A peak

Max. currents :

1200 A for frequencies $\leq 1 \mathrm{kHz}$ for 30 min max. (pause between measurements $>15 \mathrm{~min})$
Load impedance :

- 250 A range $: \leq 0.2 \Omega$
- 500 A range $: \leq 0.4 \Omega$
- 1000 A range $: \leq 0.4 \Omega$

Connection leads impedance : $\leq 40 \mathrm{~m} \Omega$

Max. output voltage (secondary open) :
Electronic limiter 30 V peak max.

Working voltage :

600 V rms

Common mode voltage :

600 V category III and pollution level 2
Influence of adjacent conductor :

- 250 A range $: \leq 15 \mathrm{~mA} / \mathrm{A}$ to 50 Hz
- 500 A range $: \leq 10 \mathrm{~mA} / \mathrm{A}$ to 50 Hz
- 1000 A range $: \leq 1 \mathrm{~mA} / \mathrm{A}$ to 50 Hz

Influence of conductor position in

 the jaws :For frequencies $\leq 400 \mathrm{~Hz}$

- 250 A range $: \leq 0.6 \%$ of output signal
- 500 A range $: \leq 0.4 \%$ of output signal
- 1000 A range $: \leq 0.2 \%$ of output signal

Load influence :
■ 250 A range : from $25 \mathrm{~m} \Omega$ to 0.2Ω
< 2% on measurement
$<4^{\circ}$ on phase

- 500 A range : from $50 \mathrm{~m} \Omega$ to 0.4Ω
< 1% on measurement
$<2^{\circ}$ on phase
- 1000 A range : from $50 \mathrm{~m} \Omega$ to 0.4Ω
< 0.5% on measurement
$<0.5^{\circ}$ on phase
Frequency influence (5):
- 250 A range :
< 1% of output signal $65 \mathrm{~Hz} . . .100 \mathrm{~Hz}$
$<5 \%$ of output signal $100 \mathrm{~Hz} . .1 \mathrm{kHz}$
- 500 A range :
< 1% of output signal $65 \mathrm{~Hz} . . .1 \mathrm{kHz}$
- 1000 A range :
< 0.5% of output signal $65 \mathrm{~Hz} . . .100 \mathrm{~Hz}$
< 1% of output signal $100 \mathrm{~Hz} . . .1 \mathrm{kHz}$

Crest factor influence :

$<1 \%$ of output signal for a crest factor ≤ 6 with current :
≤ 750 A peak (250 A range)
≤ 1500 A peak (500 A range)
≤ 3000 A peak (1000 A range)
Influence of DC current superposed on nominal current :
$<1 \%$ of output signal for a current ≤ 30 A DC

Mechanical specifications

Operating temperature :
-10° to $+50^{\circ} \mathrm{C}$
Storage temperature :
-40° to $+70^{\circ} \mathrm{C}$
Influence of temperature :
$\leq 0.15 \%$ of output signal per 10 K
Operating humidity :
From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
from 10% to 85% of RH

- 250 A range :
$<0.6 \%$ of output signal and $<2^{\circ}$ on phase
- 500 A range :
$<0.4 \%$ of output signal and $<0.6^{\circ}$ on phase
- 1000 A range :
$<0.2 \%$ of output signal and $<0.2^{\circ}$ on phase

Operating altitude :
0 to 2000 m
Max. jaws opening :
53 mm
Patented progressive opening system
Max. conductor size:
-Cable : \varnothing max 52 mm
-Busbar : 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance:
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}-15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$
$25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$ (IEC 68-2-6)
Self-extinguishing ability :
UL94 V0
Dimensions :
$216 \times 111 \times 45 \mathrm{~mm}$

Weight :

550 g

Colours :

Dark grey case with red jaws

Output :

Safety jack (4 mm)

Safety specifications

Electrical :

Instrument with double insulation or reinforced insulation between primary, secondary and outer case parts to be handled CEI 1010-1 \& CEI 1010-2-032
-600 V category III, pollution level 2

- 300V category IV, pollution level 2

Electromagnetic compatibility

(CE Mark.) :
EN 50081-1 : Class B
EN 50082-2 :

- Electrostatic discharge : IEC 1000-4-2
- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic fields $50 / 60 \mathrm{~Hz}$: IEC $1000-4-8$

[^5](2) Accuracy class according to IEC $185: 2.5 \mathrm{VA}$ - class $3-48-65 \mathrm{~Hz}$
(3) Accuracy class according to IEC $185: 5 \mathrm{VA}$ - class $3-48-65 \mathrm{~Hz}$
(4) Accuracy class according to IEC $185: 5 \mathrm{VA}$ - class $1-48-65 \mathrm{~Hz}$
(5) Out of reference field

Ordering information	Reference
AC current clamp model C148 with user's manual	P01.1203.07

Model C160 (insulated current probe)

Current	30 A peak	300 A peak	2000 A peak
Ouput	$100 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$

This 1000 A AC clamp enables easy visualisation and measurement of " current " curves.
It fits any oscilloscope since it has a coaxial lead with BNC plug.
It produces a $m V$ signal directly proportional to current.
It offers 3 different sensitivities.

Electrical specifications

Current range :
0.1 A... 30 A peak

1 A... 300 A peak
1 A... 2000 A peak

Ouput signal :

100 mV AC/A AC (1 V at 10 A)
10 mV AC/A AC (1 V at 100 A)
$1 \mathrm{~mA} \mathrm{AC/A} \mathrm{AC} \mathrm{(1} \mathrm{~V} \mathrm{at} 1000 \mathrm{~A}$)

Accuracy and phase shift (1):

- 10 A range

Primary current	$0.1 \ldots 0.5 \mathrm{~A}$	$0.5 \ldots 2 \mathrm{~A}$	$2 \ldots 10 \mathrm{~A}$	$10 \ldots 12 \mathrm{~A}$
\% Accuracy of output signal	$\leq 3 \%+10 \mathrm{mV}$			
Phase shift	not specified	not specified	$\leq 15^{\circ}$	$\leq 15^{\circ}$

■ 100 A range

Primary current	$0.1 \ldots 5 \mathrm{~A}$	$5 \ldots 20 \mathrm{~A}$	$20 \ldots 100 \mathrm{~A}$	$100 \ldots 120 \mathrm{~A}$
\% Accuracy of output signal	$\leq 2 \%+5 \mathrm{mV}$			
Phase shift	not specified	$\leq 15^{\circ}$	$\leq 10^{\circ}$	$\leq 5^{\circ}$

- 1000 A range

Primary current	$1 \ldots 50 \mathrm{~A}$	$50 \ldots 200 \mathrm{~A}$	$200 \ldots 1000 \mathrm{~A}$	$1000 \ldots 1200 \mathrm{~A}$
\% Accuracy of output signal	$\leq 1 \%+1 \mathrm{mV}$			
Phase shift	not specified	$\leq 3^{\circ}$	$\leq 2^{\circ}$	$\leq 1^{\circ}$

Bandwidth :

$10 \mathrm{~Hz} . . .100 \mathrm{kHz}(-3 \mathrm{~dB})$

dl/dt max. :

$10 \mathrm{~A} / \mathrm{\mu s}$

Max. currents :

1000 A continuous for a frequency $\leq 1 \mathrm{kHz}$ (limitation proportional to the inverse of frequency beyond)
1200 A for 40 min max. (pause between measurement > 20 min)

Load impedance :

$\geq 1 \mathrm{M} \Omega$ and $\leq 47 \mathrm{pF}$
Output impedance 1 kHz :
$515 \Omega \pm 10 \%$
Insertion impedance (at $50 / 60 \mathrm{~Hz}$)
10 A range : $<10 \mathrm{~m} \Omega$
100 A range : $<10 \mathrm{~m} \Omega$
1000 A range : < $100 \mathrm{~m} \Omega$
Ampere second product :
1 A.s

Rise / Fall time :
$\leq 40 \mu \mathrm{~s}$

Working voltage :

600 V rms

Common mode voltage :

600 V for category III and pollution level 2

Adjacent conductor influence :

$\leq 1 \mathrm{~mA} / \mathrm{A}$ to 50 Hz
Influence of conductor influence in the jaws :
$\leq 0.1 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$
Frequency influence (2) :

- 10 A Range :
< 10% of output signal 10 Hz ... 1 kHz
$<5 \%$ of output signal 1 kHz ... 10 kHz
< 20% of output signal 10 kHz ... 50 kHz
$<3 \mathrm{~dB} 50 \mathrm{kHz} . . .100 \mathrm{kHz}$
- 100 A Range :
$<5 \%$ of output signal $10 \mathrm{~Hz} . . .1 \mathrm{kHz}$
$<3 \%$ of output signal 1 kHz ... 10 kHz
< 20% of output signal 10 kHz ... 50 kHz
$<3 \mathrm{~dB} 50 \mathrm{kHz} . . .100 \mathrm{kHz}$
- 1000 A Range :
< 1% of output signal $10 \mathrm{~Hz} . . .1 \mathrm{kHz}$
< 2% of output signal 1 kHz ... 10 kHz
< 10% of output signal 10 kHz ... 50 kHz
$<3 \mathrm{~dB} 50 \mathrm{kHz} . . .100 \mathrm{kHz}$
Influence of crest factor :
$<1 \%$ of output signal for a crest factor ≤ 6 with current
10 A range : $\leq 30 \mathrm{~A}$ peak (5 Arms)
100 A range : ≤ 300 A peak (50 A rms)
1000 A range : ≤ 2000 A peak (500 A rms)
Influence of DC current superposed on nominal current :
$<1 \%$ of output signal for a current $\leq 30 \mathrm{ADC}$
Mechanical specifications
Operating temperature :
-10° to $+50^{\circ} \mathrm{C}$

Storage temperature:

-40° to $+70^{\circ} \mathrm{C}$
Influence of temperature:
$\leq 0.15 \%$ of output signal per 10 K

Operating humidity :

From 0 to 85% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
$<0.1 \%$ of output signal 10% to 85% of RH

Operating altitude :

0 to 2000 m

Max. jaws opening :
53 mm
Patented assisted opening system
Max. conductor size :
-Cable : \varnothing max. 52 mm
-Busbar: 1 busbar of $50 \times 5 \mathrm{~mm} / 4$ busbars of $30 \times 5 \mathrm{~mm}$

Casing protection :
IP 40 (IEC 529)
Drop test :
1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)

Vibration resistance :
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}-15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$ $25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$ (IEC 68-2-6)
Self-extinguishing ability :
Case and jaws : UL94 V0
Dimensions:
$216 \times 111 \times 45 \mathrm{~mm}$

Weight :

550 g

Colours :
Dark grey case with red jaws
Output:
2 m Coaxial lead with insulated BNC plug.

Safety specifications

Electrical :

Instrument with double insulation or reinforced insulation between primary, secondary and outer case parts to be handled CEI 1010-1 \& CEI 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic compatibility

(CE Mark.) :
EN 50081-1: Class B
EN 50082-2 :

- Electrostatic discharge : IEC 1000-4-2
- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic fields $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8

Ordering information	Reference
AC current probe model C160 for oscilloscope including user's manual	P01.1203.08

Current clamp for AC currents
Model C173

Current	1 A	10 A	100 A	1000 A
Ouput	$1 \mathrm{~V} / \mathrm{A}$	$100 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$

Clamp C173 measures leakage or differential currents from mA , it can also be used with multimeters equipped with a range in mV AC.
clamp C173 measures current flow in ground loops and leakage currents. It also locates defaults on ground circuits of single and three-phase networks.
For ungrounded three-phase systems, use the optional Artificial Neutral.

Electrical specifications

Current range :

0.001 A...1.2 A AC
0.01 A... 12 A AC

0.1 A... 120 A AC

1 A... 1200 A AC

Output signal :

$1 \mathrm{~V} \mathrm{AC} / \mathrm{A} \mathrm{AC}$ (1 V at 1 A)
$100 \mathrm{mV} \mathrm{AC} / \mathrm{A} \mathrm{AC}(1 \mathrm{~V}$ at 10 A$)$
10 mV AC/A AC (1 V at 100 A)
1 mV AC/A AC (1 V at 1000 A)

Accuracy and phase shift (1):

- 1 A range :

Primary current	$0.001 \ldots 0.01 \mathrm{~A}$	$0.01 \ldots 0.1 \mathrm{~A}$	$0.1 \ldots 1 \mathrm{~A}$	$1 \ldots 1.2 \mathrm{~A}$
\% Accuracy of output signal	$\leq 3 \%+1 \mathrm{mV}$	$\leq 3 \%+1 \mathrm{mV}$	$\leq 0.7 \%+1 \mathrm{mV}$	$\leq 0.7 \%+1 \mathrm{mV}$
Phase shift	not specified	not specified	$\leq 10^{\circ}$	$\leq 10^{\circ}$

- 10 A range :

Primary current	$0.01 \ldots 0.1 \mathrm{~A}$	$0.1 \ldots 1 \mathrm{~A}$	$1 \ldots 10 \mathrm{~A}$	$10 \ldots 12 \mathrm{~A}$
\% Accuracy of output signal	$\leq 1 \%+0.2 \mathrm{mV}$	$\leq 0.5 \%+0.2 \mathrm{mV}$	$\leq 0.5 \%$	$\leq 0.5 \%$
Phase shift	not specified	$\leq 5^{\circ}$	$\leq 2^{\circ}$	$\leq 2^{\circ}$

- 100 A range :

Primary current	$0.1 \ldots 1 \mathrm{~A}$	$1 \ldots 10 \mathrm{~A}$	$10 \ldots 100 \mathrm{~A}$	$100 \ldots 120 \mathrm{~A}$
\% Accuracy of output signal	$\leq 1 \%+0.2 \mathrm{mV}$	$\leq 0.5 \%+0.2 \mathrm{mV}$	$\leq 0.3 \%$	$\leq 0.2 \%$
Phase shift	not specified	$\leq 2^{\circ}$	$\leq 1^{\circ}$	$\leq 1^{\circ}$

- 1000 A range :

Primary current	$1 \ldots 10 \mathrm{~A}$	$10 \ldots 100 \mathrm{~A}$	$100 \ldots 1000 \mathrm{~A}$	$1000 \ldots 1200 \mathrm{~A}$
$\%$ Accuracy of output signal	$\leq 1 \%+0.2 \mathrm{mV}$	$\leq 0.5 \%+0.2 \mathrm{mV}$	$\leq 0.2 \%$	$\leq 0.2 \%$
Phase shift	not specified	$\leq 2^{\circ}$	$\leq 1^{\circ}$	$\leq 1^{\circ}$

Bandwidth :

$10 \mathrm{~Hz} . .3 \mathrm{kHz}$

Crest factor :

1 A range : ≤ 3 for $\mathrm{I} \leq 3$ A peak ($1 \mathrm{Arms} \mathrm{)}$
10 A range : ≤ 3 for $\mathrm{I} \leq 30$ A peak
(10 A rms)
100 A range : ≤ 3 for $\mathrm{I} \leq 300$ A peak
(100 A rms)
1000 A range : ≤ 3 for $\mathrm{I} \leq 1700$ A peak (500 A rms)

Max. currents :

1000 A continuous for a frequency $\leq 500 \mathrm{~Hz}$ (limitation proportional to the inverse of $1 / 2$ of frequency beyond)

Load impedance :

$\geq 10 \mathrm{M} \Omega$ and $\leq 47 \mathrm{pF}$
Output impedance :
1 A range : $10 \mathrm{k} \Omega \pm 10 \%$
10 A range : $1 \mathrm{k} \Omega \pm 10 \%$

100 A range : $100 \Omega \pm 10 \%$
1000 A range : $100 \Omega \pm 10 \%$
Working voltage :
600 V rms
Common mode voltage :
600 V category III and pollution level 2
Adjacent conductor influence :
$\leq 1 \mathrm{~mA} / \mathrm{A}$ to 50 Hz
Influence of conductor influence in the jaws :
$\leq 0.3 \%$ of output signal for frequencies $\leq 400 \mathrm{~Hz}$
Influence of frequency (2) :

- 1 A range :
< 2% of output signal $30 \mathrm{~Hz} . . .48 \mathrm{~Hz}$ and $65 \mathrm{~Hz} . . .1 \mathrm{kHz}$
< 10% of output signal 1 kHz ... 3 kHz
- 10 A range :
< 2% of output signal 10 Hz ... 48 Hz and from 65 Hz to 3 kHz
- 100 A range:
< 1.5% of output signal $10 \mathrm{~Hz} . . .48 \mathrm{~Hz}$ and from $65 \mathrm{~Hz} . . .3 \mathrm{kHz}$
- 1000 A range :
$<1 \%$ of output signal $10 \ldots 48 \mathrm{~Hz}$ and from $65 \mathrm{~Hz} . . .1 \mathrm{kHz}$
Influence of crest factor :
$\leq 0.5 \%$ for a peak factor limited to 3
Influence of DC current superposed on nominal current :
$\leq 10 \%$ to 1000 A for a DC current of 10 A

Mechanical specifications
Operating temperature :
$-10^{\circ} \ldots+50^{\circ} \mathrm{C}$
Storage temperature:
$-40^{\circ} \ldots+70^{\circ} \mathrm{C}$
Influence of temperature :
$\leq 0.15 \%$ of output signal per 10 K of $-10^{\circ} \mathrm{C} . .+40^{\circ} \mathrm{C}$
$\leq 0.2 \%$ of output signal per 10 K of $+40^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Operating humidity :
from $0 . . .85 \%$ of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
< 0.1% of output signal 10 ... 85% of RH

Operating altitude :

0 to 2000 m
Max. jaws opening :
53 mm
Patented assisted opening system
Max. conductor size :
Cable : \varnothing max. 52 mm
Busbar: 1 busbar of $50 \times 5 \mathrm{~mm}$ or 4 busbars of $30 \times 5 \mathrm{~mm}$
Casing protection :
IP 40 (IEC 529)

Drop test :

1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)
Vibration resistance :
$5 / 15 \mathrm{~Hz} 1.5 \mathrm{~mm}-15 / 25 \mathrm{~Hz} 1 \mathrm{~mm}$ $25 / 55 \mathrm{~Hz} 0.25 \mathrm{~mm}$ (IEC 68-2-6)
Self-extinguishing ability :
UL94 V0

Dimensions :

$216 \times 111 \times 45 \mathrm{~mm}$
Weight :
550 g
Colours :
Dark grey case with red jaws.

Output :

1.5 m insulated lead with 2 elbowed safety plugs (4 mm)

Safety specifications

Electrical :

Instrument with double insulation or reinforced insulation between primary, secondary and outer case parts to be handled CEI 1010-1 \& CEI 1010-2-032
-600 V category III, pollution level 2

- 300 V category IV, pollution level 2

Electromagnetic compatibility
(CE Mark.) :
EN 50081-1 : Class B
EN 50082-2 :
-Electrostatic discharge : IEC 1000-4-2

- Radiated field : IEC 1000-4-3
- Fast transients : IEC 1000-4-4
- Magnetic fields $50 / 60 \mathrm{~Hz}$: IEC $1000-4-8$
(1) Reference conditions : $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}$, 20 to $75 \% \mathrm{RH}$, sinusoidal signal, frequency of 48 Hz to 65 Hz , distortion factor < 1%, no DC component, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no AC magnetic field, centered tested sample, load impedance: $\geq 10 \mathrm{M} \Omega$ and $\leq 47 \mathrm{pF}$
(2) Out of reference field

Ordering information	Reference
AC current clamp model C173 including user's manual	P01.1203.09
Accessories:	P01.1972.01
Artificial neutral box AN1	P01.1001.20
Bag $\mathbf{n}^{\circ} 11$	

D SERIES

The D Series comprises a range of high performance clamp-on AC current probes designed for high current measurement.

Their excellent current transformation ratios and low phase shift, combined with broad frequency response makes for highly accurate current and power measurements.

High quality magnetic cores and windings give high precision current measurement up to 3000 A (AC).
The rectangular jaws can be used to clamp large diameter cables or busbars.
The D series clamps give true RMS measurement values and faithful signal reproduction.
There are two different kinds of model available in
the D series, the first acts as a traditional current transformer with a current output (mA) and has a wide range of voltage ratios.
These clamps may also be used with multimeters, harmonic and power measurement equipment, logging apparatus or other instruments taking AC current input.
The second type of model gives a voltage output in precise proportion to the measured current ($1 \mathrm{mV} / \mathrm{A}$, $10 \mathrm{mV} / \mathrm{A}$ or $100 \mathrm{mV} / \mathrm{A}$) so you can display and log currents on instruments without current inputs
Model D38N has been specifically designed for use with oscilloscopes, or other instruments with a BNC input.

Clamp-on AC current probe

Models D3ON and D30CN

Current	2400 A AC
Ratio	$3000: 1$
Ouput	$0.333 \mathrm{~mA} / \mathrm{A}$

Electrical Specification

Current range:
1... 2400 A AC (3000 A for temperature $<35^{\circ} \mathrm{C}$)
Current transformation ratio:
3000:1
Output signal:
$0.333 \mathrm{~mA} / \mathrm{A} A C$ (1 A to 3000 A)
Accuracy and Phase shift (1):

Primary current	150 A	600 A	3000 A
\% Accuracy Of output signal	1.5%	0.75%	0.5%
Phase shift	1.5°	0.75°	0.5°

Overload:

3600 A for 5 min's

Max. tension at output:

(Secondary circuit open):
Electronic protection limiting the tension to 42 V peak max.

Accuracy:

Following IEC 185-26-27, 5 VA, class 0.5 from 48 to 1000 Hz

Bandwidth :

30 Hz to 5 kHz (In continuous use above 1 kHz , the max. measurement current is limited)
Amps.Seconds product:
90 A.s
Load impedance:
$<5 \Omega$
Operating voltage:
600 V AC
Common mode voltage:
600 V AC
Influence of adjacent conductor:
0.005 A/A AC

Influence of conductor position in the jaws:
$1 \% \pm 0.1 \mathrm{~A}$

Mechanical Specification

Operating Temperature:
-10° to $+50^{\circ} \mathrm{C}$

Storage Temperature:

-25° to $+80^{\circ} \mathrm{C}$
Temperature Influence:
$<0.1 \%$ for every $10^{\circ} \mathrm{K}$
Max. jaw opening: 90 mm
Max. jaw insertion capacity:

- Cable: 64 mm
- group of wires: $50 \times 135 \mathrm{~mm}-64 \times 100$ mm

Casing protection:

IP20 following IEC529
Drop test:
500 mm (IEC 68-2-32)
Mechanical shock:
100 g , following IEC 68-2-27
Vibration:
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ test following IEC 68-2-6
Self-extinguishing ability:
Casing: UL94 V0
Jaws: UL94 V2
Dimensions:
$120 \times 315 \times 48 \mathrm{~mm}$

Weight:

1200 g

Colour :

Dark grey casing with red jaws
Output:

- D30N: Two 4 mm safety sockets
- D30CN: Double wound 1.5 m cable with reinforced insulation or double insulation ending with 2 elbowed 4 mm male safety plugs.

Safety Specification

Electrical

Double insulation or reinforced insulation between the primary and the secondary circuits and the outside casing in accordance with IEC 1010-2-032.

- 600 V category III, pollution: 2
- 300 V category IV, pollution: 2

Electromagnetic Compatibility
(EC Stamp):
EN 50081-1: class B
EN 50082-2:

- Electrical Discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic Field to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8

To Order	Reference
Clamp-on AC current probe model D30N with user's manual	P01.1200.49A
Clamp-on AC current probe model D30CN with user's manual	P01.1200.64

Clamp-on AC current probe
Model D31N

Current	500 A AC	1000 A AC	1500 A AC
Ratio	$500: 1$	$1000: 1$	$1500: 1$
Ouput	$2 \mathrm{~mA} / \mathrm{A}$	$1 \mathrm{~mA} / \mathrm{A}$	$0.66 \mathrm{~mA} / \mathrm{A}$

Electrical Characteristics
Current Range:
1... 500 A AC
1... 1000 A AC
1... 1500 A AC

Current transformation ratio:
500:1, 1000:1, 1500:1
Output Signal:
$2 \mathrm{~mA} / \mathrm{A} \mathrm{AC} \mathrm{(1} \mathrm{~A} \mathrm{to} 500 \mathrm{~A}$)
$1 \mathrm{~mA} / \mathrm{A} \mathrm{AC}$ (1 A to 1000 A)
$0.66 \mathrm{~mA} / \mathrm{A} \mathrm{AC}$ (1 A to 1500 A)
Accuracy and phase shift (1):

- 500 A range

Primary current	25 A	100 A	500 A
Accuracy as $\%$ of output signal	4%	3%	3%
Phase shift	4°	3.5°	2°

- Load impedance: 5Ω
- Overload: 700 A for 10 mn
- Amps.Seconds product: 6 A.s
- Accuracy: in accordance with IEC 185-26-27, 5 VA , class 3 from 48 to 1000 Hz
- 1000 A range:

Primary current	50 A	200 A	1000 A
\% Accuracy of output signal	3%	1.5%	1%
Phase shift	3°	1.5°	1°

- Load impedance: 5Ω
- Overload: 1400 A for 10 mn
- Amps.Seconds product: 30 A.s
- Accuracy: in accordance with IEC 185-26-27, 5 VA, class 1 from 48 to 1000 Hz
- 1500 A range:

Primary current	75 A	300 A	1500 A
\% Accuracy of output signal	1.5%	0.75%	0.5%
Phase shift	1.5°	0.75°	0.5°

- Load impedance: 5Ω
- Overload: 1800 A for 10 mn
- Amps.Seconds product: 65 A.s
- Accuracy: following IEC 185-26-27, 5 VA class 0.5 from 48 to 1000 Hz

Bandwidth :

30 Hz to 1500 Hz (In continuous use above 1 kHz the max. measurement current is limited)

Load impedance:

$<5 \Omega$
Working voltage:
600 V AC
Common mode voltage:
600 V AC
Max. tension at output
(Secondary circuit open):
Electronic protection limiting the tension to 42 V peak max.
Influence of adjacent conductor: 0.005 A/A AC

Influence of conductor positioning in the jaws:
$1.5 \% \pm 0.2 \mathrm{~A}$ on the $500: 1$ ratio
$1 \% \pm 0.2 \mathrm{~A}$ on the $1000: 1$ ratio
$1 \% \pm 0.2 \mathrm{~A}$ on the 1500:1 ratio

Mechanical Specification

Operating temperature:
-10° to $+50^{\circ} \mathrm{C}$

Storage temperature:

-25° to $+80^{\circ} \mathrm{C}$
Temperature influence:
$<0.1 \%$ for every $10^{\circ} \mathrm{K}$
Max. jaw opening:
90 mm
Max. jaw insertion capacity:

- Cable: 64 mm
-Group of wires:
$50 \times 135 \mathrm{~mm}-64 \times 100 \mathrm{~mm}$
Casing protection:
IP20 in accordance with IEC529

Drop test:

500 mm (IEC 68-2-32)

Mechanical shock:

100 g , in accordance with IEC 68-2-27

Vibration:

10/55/10 Hz, 0.15 mm
test in accordance with IEC 68-2-6
Self-extinguishing ability:
Casing: UL94 V0
Jaws: UL94 V2
Dimensions:
$120 \times 315 \times 48 \mathrm{~mm}$

Weight:

1200 g

Colour:

Dark grey casing and red jaws
Output:
Two 4 mm security sockets

Safety Specifications

Electrical

Double insulation or reinforced insulation between the primary and the secondary circuits and the outer casing in accordance with IEC 1010-2-032.

- 600 V category III, pollution: 2
- 300 V category IV, pollution: 2

Electromagnetic Compatibility
(EC Stamp) :
EN 50081-1: class B
EN 50082-2:

- Electrical Discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic Field up to $50 / 60 \mathrm{~Hz}$

IEC 1000-4-8

[^6]
To Order

Clamp-on AC current probe
Model D32N

Current	1000 A AC	2000 A AC	2400 A AC
Ratio	$1000: 1$	$2000: 1$	$3000: 1$
Ouput	$1 \mathrm{~mA} / \mathrm{A}$	$0.5 \mathrm{~mA} / \mathrm{A}$	$0.333 \mathrm{~mA} / \mathrm{A}$

Electrical Specification

Current range:
1... 1000 A AC
1... 2000 A AC
1... 2400 A AC

Current transformation ratio:
1000:1, 2000:1, 3000:1

Output signal:

$1 \mathrm{~mA} / \mathrm{A} \mathrm{AC} \mathrm{(1} \mathrm{~A} \mathrm{to} 1000 \mathrm{~A}$)
$0.5 \mathrm{~mA} / \mathrm{A} \mathrm{AC}$ (1 A to 2000 A)
$0.333 \mathrm{~mA} / \mathrm{A}$ AC (1 A to 3000 A)
Accuracy and Phase shift (1):

- 1000 A range

Primary current	50 A	200 A	1000 A
\% Accuracy of Output signal	3%	1.5%	1%
Phase shift	3°	1.5°	1°

- Load impedance: 2.5Ω
- Overload: 1400 A for 10 mn
- Amps.Seconds product: 25 A.s
- Accuracy: in accordance with IEC 185-2627, 2.5 VA, class 1 from 48 to 1000 Hz
- 2000 A range :

Primary range	100 A	400 A	2000 A
\% Accuracy of Output signal	1.5%	0.75%	0.5%
Phase shift	1.5°	0.75°	0.5°

- Load impedance: 5Ω
- Overload: 2400 A for 10 min's
- Amps.Seconds product: 60 A.s
- Accuracy: in accordance with IEC 185-2627, 5 VA , class 0.5 from 48 to 1000 Hz
- 3000 A range :

Primary current	150 A	600 A	3000 A
\% Accuracy of Output signal	1.5%	0.75%	0.5%
Phase shift	1.5°	0.75°	0.5°

- Load impedance: 10Ω
- Overload: 3400 A for 10 min's
- Amps. Seconds product: 90 A.s
- Accuracy: in accordance with IEC 185-2627, 10 VA class 0.5 from 48 to 1000 Hz

Bandwidth:

30 Hz to 1000 Hz (In continuous use above 600 kHz , the max. measurement current is limited)

Load impedance:

$<10 \Omega$ max
Work voltage:
600 V AC
Common mode voltage:
600 V AC
maximum tension at output
(Secondary circuit open):
Electronic protection limiting the tension to 42 V peak max.
Influence of adjacent conductor: 0.005 A/A AC

Influence of conductor positioning in jaws:
$1.5 \% \pm 0.2 \mathrm{~A}$ on the $1000: 1$ ratio
$1 \% \pm 0.2 \mathrm{~A}$ on the $2000: 1$ ratio
$1 \% \pm 0.2 \mathrm{~A}$ on the $3000: 1$ ratio

Mechanical Specification

Operating Temperature:
-10° to $+50^{\circ} \mathrm{C}$

Storage Temperature:

-25° to $+80^{\circ} \mathrm{C}$
Temperature influence:
$<0.1 \%$ for every $10^{\circ} \mathrm{K}$
Max. jaw opening:
90 mm
Clamp insertion capacity:

- Cable : 64 mm
- group of wires: $50 \times 135 \mathrm{~mm}-64 \times 100 \mathrm{~mm}$

Casing protection:

IP20 in accordance with IEC529

Drop test:

500 mm (IEC 68-2-32)

Mechanical shock:

100 g , in accordance with IEC 68-2-27

Vibration:

10/55/10 Hz, 0.15 mm
test in accordance with IEC 68-2-6

Self-extinguishing ability:

Casing: UL94 V0
Jaws: UL94 V2
Dimensions:
$120 \times 315 \times 48 \mathrm{~mm}$

Weight:

1200 g

Colour:

Dark grey casing with red jaws

Output:

Via two 4 mm safety sockets

Safety Specification

Electrical

Double insulation or reinforced insulation between the primary and secondary circuits and outer casing in accordance with IEC 1010-2-032.

- 600 V category III, pollution: 2
- 300 V category IV, pollution: 2

Electromagnetic Compatibility

(EC Stamp):
EN 50081-1: class B
EN 50082-2:

- Electrical Discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8

Clamp-on AC current probe
Model D33N

Current	2400 A AC
Ratio	$3000: 5$
Ouput	$1.666 \mathrm{~mA} / \mathrm{A}$

Electrical Specification

Current Range:

1... 2400 A AC (3000 A if the temp. $<35^{\circ} \mathrm{C}$)

Current transformation ratio:
3000:5
Output signal:
$1.666 \mathrm{~mA} / \mathrm{A}$ AC (5 A to 3000 A)
Accuracy and phase shift (1):

Primary current	150 A	600 A	3000 A
\% Accuracy of Output signal	3%	1.5%	1%
Phase shift	3°	1.5°	1°

Overload:

3600 A for 10 mn

Accuracy :

In accordance with IEC 185-26-27, 5 VA
class 1, from 48 to 1000 Hz

Bandwidth:

30 Hz to 5 kHz (In continuous use above 1 kHz , the max. measurement current is limited)
Amps.Seconds product:
90 A.s
Load impedance:
$<1 \Omega$
Working voltage:
600 V AC
Common mode voltage:
600 V AC
Influence of adjacent conductor:
0.005 A/A AC

Influence of conductor positioning in jaws:
$1 \% \pm 0.1 \mathrm{~A}$

Mechanical Specification

Operating Temperature: -10° to $+50^{\circ} \mathrm{C}$

Storage temperature:

-25° to $+80^{\circ} \mathrm{C}$
Temperature Influence:
$<0.1 \%$ for every $10^{\circ} \mathrm{K}$
Max. jaw opening:
90 mm
Clamp insertion capacity:

- Cable: 64 mm
- group of wires: $50 \times 135 \mathrm{~mm}-64 \times 100 \mathrm{~mm}$

Casing protection:

IP20 in accordance with IEC529

Drop test:

500 mm (IEC 68-2-32)

Mechanical shock:

100 g , in accordance with IEC 68-2-27
Vibration:
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$
Test in accordance with IEC 68-2-6
Self-extinguishing ability:
Casing: UL94 V0
Jaws: UL94 V2

Dimensions:

$120 \times 315 \times 48 \mathrm{~mm}$

Weight:

1200 g

Colour:

Dark grey casing with red jaws

Output:

Via two 4 mm safety sockets

Safety Specification

Electrical

Double insulation or reinforced insulation between the primary and the secondary circuits and the outer casing in accordance with IEC 1010-2-032.

- 600 V category III, pollution: 2
- 300 V category IV, pollution: 2

Electromagnetic Compatibility

(EC Stamp):
EN 50081-1: class B
EN 50082-2:

- Electrical Discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic Field to $50 / 60 \mathrm{~Hz}$ IEC $1000-4-8$

To Order	Reference
Clamp-on AC current probe model D33N with user's manual	P01.1200.52A

Clamp-on AC current probe
Model D34N

Current	500 A AC	1000 A AC	1500 A AC
Ratio	$500: 5$	$1000: 5$	$1500: 5$
Ouput	$10 \mathrm{~mA} / \mathrm{A}$	$5 \mathrm{~mA} / \mathrm{A}$	$3.33 \mathrm{~mA} / \mathrm{A}$

Electrical Specification

Current range:
1... 500 A AC
1... 1000 A AC
1... 1500 A AC

Current transformation ratio:

500:5, 1000:5, 1500:5

Output signal:

$10 \mathrm{~mA} / \mathrm{A} \mathrm{AC} \mathrm{(5A} \mathrm{to} 500 \mathrm{~A}$)
$5 \mathrm{~mA} / \mathrm{A} \mathrm{AC}$ (5 A to 1000 A)
$3.33 \mathrm{~mA} / \mathrm{A} \mathrm{AC}$ (5 A to 1500 A)
Accuracy and Phase shift (1):

- 500 A Range

Primary current	25 A	100 A	500 A
\% Accuracy of Output signal	5%	3%	3%
Phase shift	6°	4°	4°

- Load impedance: 0,2 Ω
- Overload: 700 A for 10 min's
- Amps.Seconds product: 3.5 A.s
- Accuracy : in accordance with IEC 185-26-27, 5 VA class 3 from 48 to 1000 Hz
-1000 A range

Primary current	50 A	200 A	1000 A
\% Accuracy of Output signal	3%	1.5%	1%
Phase shift	3°	1.5°	1°

- Load impedance: 0.1Ω
- Overload: 1400 A for 10 min's
- Amps.Seconds product: 18 A.s
- Accuracy: according to IEC 185-26-27, 2.5 VA class 1 from 48 to 1000 Hz

■1500 A range:

Primary current	75 A	300 A	1500 A
\% Accuracy of Output signal	1.5%	0.75%	0.5%
Phase shift	1.5°	0.75°	0.5°

- Load impedance: 0.1Ω
- Overload: 1800 A for 10 min's
- Amps.Seconds product: 40 A.s
- Accuracy: in accordance with IEC 185-2627, 2.5 VA class 0.5 from 48 to 1000 Hz

Bandwidth :

30 Hz to 1500 Hz (In continuous use above 1.5 kHz the max. measurement current is limited)

Load impedance:

< 1Ω max
Working voltage:
600 V AC
Common mode voltage:
600 V AC
Max. tension at the output
(Secondary circuit open):
Electronic protection limiting the tension to 42 V peak max.
Influence of adjacent conductor :
0.005 A/A AC

Influence of conductor positioning in the jaws:
$1.5 \% \pm 0.2 \mathrm{~A}$ on the 500:5 ratio
$1 \% \pm 0.2 \mathrm{~A}$ on the $1000: 5$ ratio
$1 \% \pm 0.2 \mathrm{~A}$ on the $1500: 5$ ratio

Mechanical specification

Operating Temperature:
-10° to $+50^{\circ} \mathrm{C}$

Storage Temperature:

-25° to $80^{\circ} \mathrm{C}$
Temperature Influence:
$<0.1 \%$ for every $10^{\circ} \mathrm{K}$

Max. jaw opening:

90 mm
Clamp insertion capacity:

- Cable: 64 mm
- Group of wires:
$50 \times 135 \mathrm{~mm}-64 \times 100 \mathrm{~mm}$

Casing protection:

IP20 in accordance with IEC529

Drop test:

500 mm (IEC 68-2-32)

Mechanical shock:

100 g , in accordance with IEC 68-2-27

Vibration:

10/55/10 Hz, 0.15 mm
test in accordance with IEC 68-2-6
Self-extinguishing ability:
Casing : UL94 V0
Jaws: UL94 V2

Dimensions:

$120 \times 315 \times 48 \mathrm{~mm}$

Weight:

1200 g

Colour:

Dark grey casing with red jaws

Output:

Via two 4 mm safety sockets

Safety Specification

Electrical

Double insulation or reinforced insulation between the primary and secondary circuits and the outer casing in accordance with IEC 1010-2-032.

- 600 V category III, pollution: 2
- 300 V category IV, pollution: 2

Electromagnetic Compatibility

(EC Stamp):

EN 50081-1: class B
EN 50082-2:

- Electrical Discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8

[^7]Clamp-on AC current probe
Model D35N

Current	1000 A AC	2000 A AC	2400 A AC
Ratio	$1000: 5$	$2000: 5$	$3000: 5$
Ouput	$5 \mathrm{~mA} / \mathrm{A}$	$2.5 \mathrm{~mA} / \mathrm{A}$	$1.666 \mathrm{~mA} / \mathrm{A}$

Electrical Specification

Current Range:

1... 1000 A AC
1... 2000 A AC
1... 2400 A AC
(3000 A if the temperature $<35^{\circ} \mathrm{C}$)
Current transformation ratio:
1000:5, 2000:5, 3000:5

Output Signal:

$5 \mathrm{~mA} / \mathrm{A} \mathrm{AC}$ (5 A to 1000 A)
$2.5 \mathrm{~mA} / \mathrm{A} \mathrm{AC}$ (5 A to 2000 A)
$1.666 \mathrm{~mA} / \mathrm{A} \mathrm{AC} \mathrm{(5} \mathrm{~A} \mathrm{to} 3000 \mathrm{~A}$)
Accuracy and phase shift (1):
-1000 A Range

Primary current	50 A	200 A	1000 A
\% Accuracy of Output signal	3%	1.5%	1%
Phase shift	3°	1.5°	1°

- Load impedance: $0,1 \Omega$
- Overload: 1200 A for 10 mn
- Amps.Seconds product: 15 A.s
- Accuracy: in accordance to IEC 185-26$27,2,5 \mathrm{VA}$, class 1 from 48 to 1000 Hz

-2000 A range

Primary current	100 A	400 A	2000 A
\% Accuracy of Output signal	1.5%	0.75%	0.5%
Phase shift	1.5°	0.75°	0.5°

- Load impedance: 0.2Ω
- Overload: 2400 A for 10 min's
- Amps.Seconds product: 50 A.s
- Accuracy: in accordance with IEC 185-2627, 5 VA , class 0.5 from 48 to 1000 Hz
- 3000 A range

Primary current	150 A	600 A	3000 A
\% Accuracy of Output signal	1.5%	0.75%	0.5%
Phase shift	1.5°	0.75°	0.5°

- Load impedance: 0.4Ω
- Overload: 2400 A for 10 min's
- Amps.Seconds product: 80 A.s
- Accuracy: in accordance with IEC 185-2627, 10 VA class 0.5 from 48 to 1000 Hz

Bandwidth:

30 Hz to 1500 Hz (In continuous use above 1.5 kHz , the max. measurement current is limited)

Load impedance:

< 2Ω max
Working voltage:
600 V AC
Common mode voltage:
600 V AC
Influence of adjacent conductor: 0.005 A/A AC

Influence of conductor positioning in jaws:
$1.5 \% \pm 0.2 \mathrm{~A}$ on the $1000: 5$ ratio
$1 \% \pm 0.2 \mathrm{~A}$ on the $2000: 5$ ratio
$1 \% \pm 0.2 \mathrm{~A}$ on the $3000: 5$ ratio
Mechanical Specification
Operating temperature:
-10° to $+50^{\circ} \mathrm{C}$
Storage Temperature:
-25° to $+80^{\circ} \mathrm{C}$
Temperature Influence:
$<0.1 \%$ for every $10^{\circ} \mathrm{K}$
Max. Jaw Opening:
90 mm

Clamp Insertion Capacity:

- Cable: 64 mm
-Group of wires: $50 \times 135 \mathrm{~mm}-64 \times 100 \mathrm{~mm}$

Casing protection:

IP20 in accordance with IEC529

Drop test:

500 mm (IEC 68-2-32)

Mechanical Test:

100 g , in accordance with IEC 68-2-27
Vibration:
10/55/10 Hz, 0.15 mm
test in accordance IEC 68-2-6
Self-extinguishing ability:
Casing : UL94 V0
Jaws: UL94 V2
Dimensions:
$120 \times 315 \times 48 \mathrm{~mm}$

Weight:

1200 g
Colour :
Dark grey casing with red jaws
Output:
Via 4 mm safety sockets

Safety Specification

Electrical

Double insulation or reinforced insulation between the primary and the secondary circuits and the outer casing in accordance with IEC 1010-2-032.

- 600 V category III, pollution: 2
- 300 V category IV, pollution: 2

Electromagnetic Compatibility

(EC Stamp):
EN 50081-1: class B
EN 50082-2:

- Electrical discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic Field to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8

[^8]Clamp-on AC current probe
Model D36N

Current	3000 A AC
Ratio	$3000: 3$
Ouput	$1 \mathrm{~mA} / \mathrm{A}$

Electrical Specification

Current Range:

1... 2400 A AC

Current transformation ratio:
3000:3
Output signal:
$1 \mathrm{~mA} / \mathrm{A} \mathrm{AC}$ (3 A to 3000 A)
Accuracy and phase shift (1):

Primary current	150 A	600 A	3000 A
\% Accuracy of Output signal	0.5%	0.75%	0.5%
Phase Shift	1.5°	0.75°	0.5°

Accuracy:

In accordance with IEC 185-26-27, 5 VA, class 0.5 from 48 to 1000 Hz

Bandwidth:

30 Hz to 5 kHz
(beyond 400 Hz the output is limited in inverse proportion to the frequency)

Overload:

3600 A for 5 min's

Max. tension at output

(Secondary circuit open):
Electronic protection limiting the tension to 42 V peak max.
Load impedance:
$<0.6 \Omega$
Working voltage:
600 V AC
Common mode tension:
600 V AC
Influence of adjacent conductor:
0.005 A/A AC

Influence of positioning of conductor in jaws:
$1 \% \pm 0.1 \mathrm{~A}$

Mechanical Specification

Operating Temperature:
-10° to $+50^{\circ} \mathrm{C}$

Storage Temperature:

-25° to $+80^{\circ} \mathrm{C}$
Temperature Influence:
$<0.1 \%$ for every $10^{\circ} \mathrm{K}$
Max. Jaw opening:
90 mm
Clamp insertion capacity:

- Cable: 64 mm
- Group of wires: $50 \times 135 \mathrm{~mm}-64 \times 100 \mathrm{~mm}$

Casing protection:

IP20 in accordance with IEC529

Drop test:

500 mm (IEC 68-2-32)

Mechanical Shock:

100 g , in accordance with IEC 68-2-27
Vibration:
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$
test in accordance with IEC 68-2-6

Self-extinguishing ability:

Casing : UL94 Vo
Jaws: UL94 V2
Dimensions:
$120 \times 315 \times 48 \mathrm{~mm}$

Weight:

1200 g

Colour:

Dark grey casing with red jaws
Output:
Via 4 mm safety sockets

Safety Specification

Electrical

Double insulated or reinforced insulation between the primary and the secondary circuits and the outer casing in accordance with IEC 1010-2-032.

- 600 V category III, pollution: 2
- 300 V category IV, pollution: 2

Electromagnetic Compatibility
(EC Stamp):
EN 50081-1: class B
EN 50082-2:

- Electrical Discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic Field to $50 / 60$ Hz IEC 1000-4-8
(1) Reference Conditions : $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no DC component, no current carrying conductor close by, centred test sample, load impedance 0.55Ω.

To Order	Reference
Clamp-on AC current probe model D36N with user's manual	P01.1200.55A

Clamp-on AC current probe
Model D37N

Current	30 A AC	300 A AC	3000 A AC
Ouput	$100 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$

Electrical Specification

Current Range:
10 mA ... 30 A AC
1... 300 A AC
1... 2000 A AC
(2800 A if the temperature $<35^{\circ} \mathrm{C}$)
Output Signal:
$100 \mathrm{mV} / \mathrm{A} \mathrm{AC}(3 \mathrm{~V}$ to 30 A$) 90$ A peak $10 \mathrm{mV} / \mathrm{A} \mathrm{AC}(3 \mathrm{~V}$ to 300 A$) 900 \mathrm{~A}$ peak $1.666 \mathrm{mV} / \mathrm{A} \mathrm{AC}(3 \mathrm{~V}$ to 3000 A$) 9000$ A peak

Accuracy and phase shift (1):

- 30 A range

Primary current	1.5 A	6 A	30 A
\% Accuracy of Output signal	$2 \% \pm 10 \mathrm{mV}$		
Phase shift	15°	7°	5°

■ 300 A range

Primary current	15 A	60 A	300 A
\% Accuracy of Output signal	$2 \% \pm 2 \mathrm{mV}$		
Phase shift	3°	1.5°	1°

- 3000 A range

Primary current	150 A	600 A	3000 A
\% Accuracy of Output signal	$2 \% \pm 0.5 \mathrm{mV}$		
Phase shift	1.5°	1°	0.5°

Overload:

3200 A for 5 min's
Amps.Seconds product:
100 A.s
dV/dt:

- 100 mV AC/A AC :
$\square 10 \mathrm{mV}$ AC/A AC :
$\square 1 \mathrm{mV}$ AC/A AC :

Bandwidth:

30 Hz to 5 kHz (on the 3000 A range the max. measurement current is limited above 200 Hz)

Load impedance:

$\geq 1 \mathrm{M} \Omega$
Working voltage:
600 V AC
Common mode voltage:
600 V AC
Secondary voltage in open circuit:
10 V max

Influence of adjacent conductor: 0.005 A/A AC

Influence of positioning of conductor in jaws:
1.5% of the reading
Frequency influence:
From 30 Hz to $5 \mathrm{kHz}: \pm 6 \%$ on all ranges
Influence of DC current:
0.05% per A (DC)

Mechanical Specification

Operating Temperature:
-10° to $+50^{\circ} \mathrm{C}$

Storage Temperature:

-25° to $+80^{\circ} \mathrm{C}$
Temperature Influence:
< 0.1% for every $10^{\circ} \mathrm{K}$
Max. opening of jaws:
90 mm
Clamp Insertion capacity:

- Cable: 64 mm
- Group of wires: $50 \times 135 \mathrm{~mm}-64 \times 100 \mathrm{~mm}$

Casing protection:

IP20 in accordance with IEC529

Drop test:

500 mm (IEC 68-2-32)

Mechanical sock:

100 g , in accordance with IEC 68-2-27
Vibration:
10/55/10 Hz, 0.15 mm
test in accordance with IEC 68-2-6
Self-extinguishing ability:
Casing: UL94 V0
Jaws: UL94 V2

Dimensions:

$120 \times 315 \times 48 \mathrm{~mm}$

Weight:

1200 g
Colour:
Dark grey casing with red jaws
Output:
Via 4 mm safety sockets

Safety Specification

Electrical

Double insulation or reinforced insulation between the primary and secondary circuits and the outer casing on accordance with IEC 1010-2-032.

- 600 V category III, pollution: 2
- 300 V category IV, pollution: 2

Electromagnetic Compatibility
(EC Stamp):
EN 50081-1: class B
EN 50082-2:

- electrical Discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic field to 50/60 Hz IEC 1000-4-8

[^9]Model D38N (Insulated current probe)

Current	90 A peak	900 A peak	9000 A peak
Ouput	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$	$0.1 \mathrm{mV} / \mathrm{A}$

Model D38N is a highly accurate clampon AC current probe with a voltage output in mV for direct measurement reading on an oscilloscope.
There is a 3 -way switch on the handle for range selection.
The clamp's wide jaw opening enables measurements to be made on both cables and small bus bars

Electrical Specification

Current Range :
1... 30 A AC (90 Acc)
1... 300 A AC (900 Acc)
1... 2400 A AC (9000 Acc)
(3000 A if the temperature $<35^{\circ} \mathrm{C}$)

Output signal :

$10 \mathrm{mV} / \mathrm{A} \mathrm{AC}(0.3 \mathrm{~V}$ to 30 A$)$
$1 \mathrm{mV} / \mathrm{A} \mathrm{AC}(0.3 \mathrm{~V}$ to 300 A$)$
$0.1 \mathrm{mV} / \mathrm{A} \mathrm{AC}(0.3 \mathrm{~V}$ to 3000 A$)$
Accuracy and phase change (1):

- 30 A range

primary current	1.5 A	6 A	30 A
\% Accuracy of Output signal	$2 \% \pm 1 \mathrm{mV}$		
Phase shift	20°	10°	5°

- 300 A range

Primary current	15 A	60 A	300 A
\% Accuracy of Output signal	$2 \% \pm 0.5 \mathrm{mV}$		
Phase shift	3°	1.5°	1°

■ 3000 A range

Primary current	150 A	600 A	3000 A
\% Accuracy of Output signal	$2 \% \pm 0.2 \mathrm{mV}$		
Phase shift	3°	1.5°	1°

Amps.Seconds product:

90 A.s

Bandwidth:

10 Hz to 50 kHz (in continual use above 2 kHz , the max. measurement current is limited)
dV/dt
30 A range : $0.3 \mathrm{mV} / \mu \mathrm{s}$
300 A range : $3 \mathrm{mV} / \mu \mathrm{s}$
3000 A range : $30 \mathrm{mV} / \mu \mathrm{s}$
Working voltage :
600 V AC

Load resistance:

$\geq 1 \mathrm{M} \Omega$ et $\leq 47 \mathrm{~h}$
Common mode voltage:
600 V AC
Influence of adjacent conductor:
0.005 A/A AC

Influence of conductor positioning in jaws:
1% of reading $\pm 0.1 \mathrm{~A}$
Frequency influence:
From 10 Hz to $10 \mathrm{kHz}: 1 \mathrm{~dB}$ on all the ranges

Mechanical Specification

Operating Temperature:
-10° to $+50^{\circ} \mathrm{C}$

Storage Temperature:

-25° to $+80^{\circ} \mathrm{C}$

Temperature:

$<0.1 \%$ for every $10^{\circ} \mathrm{K}$
Max. jaw opening:
90 mm
Clamp insertion capacity:

- Cable : 64 mm
- Group of wires: $50 \times 135 \mathrm{~mm}-64 \times 100 \mathrm{~mm}$

Casing protection:

IP20 in accordance with IEC529

Drop test:

500 mm (IEC 68-2-32)
Mechanical shock:
100 g , in accordance with IEC 68-2-27

Vibration:

10/55/10 Hz, 0.15 mm
test in accordance with IEC 68-2-6
Self-extinguishing ability:
casing : UL94 V0
Jaws : UL94 V2
Dimensions:
$120 \times 315 \times 48 \mathrm{~mm}$

Weight:

1200 g
Colour:
Dark grey casing with red jaws
Output:
2 m Coaxial lead with insulated BNC plug (600 Vrms)

safety Specification

Electrical

Double insulation or reinforced insulation between the primary and secondary circuits and the outer casing in accordance with IEC 1010-2-032.

- 600 V category III, pollution: 2
- 300 V category IV, pollution: 2

Electromagnetic Compatibility

(EC Stamp):

EN 50081-1: class B
EN 50082-2

- Electrical Discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic Field to $50 / 60 \mathrm{~Hz}$ IEC $1000-4-8$

B SERIES

The only model in the B series, the B 2 is designed for the measurement of ground leakage currents that arise as a result of insulation faults. It enables the fault to be located and diagnosed before failure occurs thus avoiding installation shutdown.
It is designed specifically for locating low current faults on high current circuits.
The B2 measures differential or leakage current from $500 \mu \mathrm{~A}$ upwards and may be used to measure currents up to 200 A in continuous use (400 A max.). The B2 has two measurement ranges, $1 \mathrm{mV} / \mathrm{mA}$ $A C$ or $1 \mathrm{mV} / \mathrm{A} A C$.

As a leakage current detector the B2 can be used on
single or multiphase systems whether the currents are in or out of phase, balanced or unbalanced. The B2 may be used simply as a high precision clamp-on current probe.

With its 100 mm jaw opening and dynamic measurement range from $500 \mu \mathrm{~A}$ to 200 A , the B 2 is a versatile instrument, highly useful in the analysis of out of balance circuits, leakage currents and ground loop currents.
When used in conjunction with an artificial neutral the B2 can equally be used to measure fault currents on 3 phase circuits with no neutral.

Model B2

Current	4 A AC	200 A AC
Ouput	$1 \mathrm{mV} / \mathrm{mA}$	$1 \mathrm{mV} / \mathrm{A}$

Model B2 measures leakage or differential currents as low as $500 \mu \mathrm{~A}$ and can be used in conjunction with multimeters with AC mV input.
The B2 clamp measures ground loop currents, leakage currents and can be used to detect faults on earthed mono-phase or three-phase networks.
When working on three-phase systems, use the artificial neutral available.

Electrical Specification

4 A Range

- Current Range:
$500 \mu \mathrm{~A} . . .4$ A AC
- Output Signal:
$1 \mathrm{mV} / \mathrm{mA}$ (4 V max)
- Accuracy (1):

Primary current	$\leq 10 \mathrm{~mA}$	100 mA	4 A
\% Accuracy of output signal	$\leq 3 \%+1 \mathrm{~mA}$	$\leq 0.5 \%+0.5 \mathrm{mV}$	$\leq 0.5 \%+0.5 \mathrm{mV}$
Phase shift	non specified	$\leq 15^{\circ}$	$\leq 10^{\circ}$

- Load impedance:
$1 \mathrm{M} \Omega$ min

200 A Range

- Current range:
$500 \mathrm{~mA} . . .200$ A AC
- Output signal:
$1 \mathrm{mV} / \mathrm{A}(400 \mathrm{mV}$ max)
- Accuracy (1):

Primary current	$\leq 10 \mathrm{~A}$	200 A	400 A
Accuracy as \%	$\leq 0.5 \%$	$\leq 0.35 \%$	$\leq 0.35 \%$
of output signal	+0.5 mA	+0.5 mV	+1 mV
Phase shift	non specified	$\leq 1^{\circ}$	$\leq 0,7^{\circ}$

Load impedance:

$\geq 10 \mathrm{M} \Omega$ et $\leq 100 \mathrm{pF}$

Frequency range:

$30 \mathrm{~Hz} . .1 \mathrm{kHz}$ limited frequency for currents from 100 A at 1 kHz

Overload:

Between 200 A and 400 A , the max. measurement time is 5 min's with 20 minutes rest, at $25^{\circ} \mathrm{C}$ max

Mechanical Specifications

Jaw opening:
100 mm
Insertion capacity:
100 mm
Casing protection:
IP 20 (IEC 529)
Mechanical shock:
100 g (IEC 68-2-6-27)
Vibration:
10/55/10 Hz, 0.15 mm (IEC 68-2-6)

Self-extinguishing ability:

Casing: UL94 V0
Jaws: UL94 V2

Dimensions:

$31.1 \times 15 \times 4.1 \mathrm{~cm}$

Weight:

2 Kg

Output:

Via 1.5 m double insulated lead with male safety plugs.

Safety specifications

Dielectric test:

2 kV AC

- Double insulated device or extra insulation between the primary and secondary circuits and outer casing, in accordance with IEC 1010-1 et CEI 1010-2-032
-30 V category III, pollution degree 2

4. For conductors exceeding 30 V in relation to the earth, only use the clamp if the conductors are insulated.
(1) Reference Conditions : $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}, 48$ to 65 Hz , measurement apparatus impedance $>10 \mathrm{M} \Omega / 100 \mathrm{pF}$, no DC current in the conductor sample, test sample centred in clamp's jaws.

To Order	Reference
AC Clamp-on current probe model B2 with user's manual	P01.1200.33
Accessories:	
Artificial neutral AN1	P01.1972.01
Shoulder bag $\mathbf{n}^{\circ} 11$	P01.1001.20

AmpFLEX ${ }^{\text {TM }}$ Series

These flexible current probes are as equally at home measuring low AC currents of a few hundred mA's as they are measuring high currents of several tens of kA's.
Their main point of interest is their flexibility and the ease with which electrical conductors of all shapes and sizes (cables, bus bars) and degrees of accessibility can be gripped.
They have a number of other strong points; they are light weight (having no magnetic circuit), they do not suffer from the saturation effect and their high level of accuracy combined with minimal phase shift make them perfect for power measurement applications.
AmpFLEXA100 :

- The A100 (pictured above) has a flexible toroid which connects, via a screened lead, to a small
unit containing all the processing electronics and a standard 9 V battery.
The unit can be connected directly to any multimeter, wattmeter or recording device. With either one or two ranges, the A100's give an AC voltage output of $0.1-1-10$ or $100 \mathrm{mV} / \mathrm{A}$. As well as the standard models (48,80 , or 120 cm 's), there are also models available on request where you can choose the sensor length and sensitivity.

AmpFLEXA101:

- The A101 has exactly the same specification as the A100's but comes without the electronic unit. These sensors are thus used by other manufacturers and integrated into their own test and measurement products.

Flexible AC current probe
Model A100 20-200/2

Current	20 A AC	200 A AC
Ouput	$100 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$

Electrical specifications

Current range :
0.5... 20 A AC
0.5... 200 A AC

Output signal :
$100 \mathrm{mV} \mathrm{AC} / \mathrm{A} A C(2 \mathrm{~V}$ at 20 A$)$
10 mV AC/A AC (2 V at 200 A)
Accuracy (1):

Range	20 A		200 A	
Primary current	$0.5 \ldots 5 \mathrm{~A}$	$5 \ldots 20 \mathrm{~A}$	$0.5 \ldots 5 \mathrm{~A}$	$0.5 \ldots 200 \mathrm{~A}$
\% accuracy of output signal	not specified	$\leq 1 \%$	not specified	$\leq 1 \%$
Phase shift	$\leq 1.3^{\circ}$	$\leq 1.3^{\circ}$	$\leq 1.3^{\circ}$	$\leq 1.3^{\circ}$

Bandwidth :

$10 \mathrm{~Hz} . . .20 \mathrm{kHz}$

Crest factor :

2.25 at nominal current

Max. current / Max. output voltage :

No current limit, however maximum output is 4.5 V peak.
Load impedance $: \geq 1 \mathrm{M} \Omega$
Influence of \mathbf{Z} load impedance :
$\leq 0.1 \% / \mathrm{Z}$, (Z in $\mathrm{M} \Omega$)
Output impedance :
$1 \mathrm{k} \Omega$
DC voltage shift at output :
20 A range : $\leq 50 \mathrm{mV}$ DC
200 A range : $\leq 5 \mathrm{mV}$ DC
Working voltage :
1000 V rms
Influence of adjacent conductor :
$\leq 1 \%$ interference current at 50 Hz
($\leq 2 \%$ near catch)
Influence of conductor position in the loop:
$\leq 1 \%$ ($\leq 4 \%$ near catch)
Influence of sensor shape :
$\leq 1 \%$ for an oblong shape

Supply :

9 V alkaline battery (NEDA 1604A, IEC 6LR61)

Battery life :

$\geq 150 \mathrm{hrs}$ continuous
$\geq 1000 \times 1$ min measurements

Low Battery signal :

Green LED : battery is OK
Green LED flashes : battery nearly worn out
No green LED : battery totally worn out
Overload signal : red LED
Mechanical specifications
Working temperature :
-10° to $+55^{\circ} \mathrm{C}$, (maximum temperature for sensor is $90^{\circ} \mathrm{C}$)
Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$

Temperature influence :
$\leq 0.5 \%$ of output signal per 10 K
Operating humidity :
for 0 to 95% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
$<0.2 \%$ of output signal from 10% to 85% of RH
Operating altitude :
$0 . . .2000 \mathrm{~m}$
Casing protection :
Case : IP 40 (IEC 529)
Flexible sensor : IP65 (IEC 529)
Drop test : 1 m (IEC 68-2-32)

Shock resistance :

100 g (IEC 68-2-27)

Vibration :

5/15/5 $1.5 \mathrm{~mm}-15 / 25 / 151 \mathrm{~mm}-25 / 55 / 25$ 0.25 mm (IEC 68-2-6)

Self-extinguishing ability :
Case, flexible sensor and catch unit : UL94 Vo

Dimensions:

Case : $140 \times 64 \times 28 \mathrm{~mm}$
Connector lead : 2 m (connects sensor to case)
Flexible sensor : $\varnothing 12 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$

Weight :

Case : < 200 g
Flexible sensor : approx. 30 g per 10 cm length
Bending radius : $\geq 15 \mathrm{~mm}$

Colours :

Case and connection lead : dark grey, red flexible sensor with dark grey catch unit
Output:
2 safety jacks (4 mm) spacing 19 mm

Safety specifications

Electrical :

Double insulation or reinforced insulation between primary, secondary and outer parts of case normally handled, IEC 1010-11000V category III, pollution 2
Electromagnetic compatibility
(EMC Mark) :
EN 50081-1 : in conformity
EN 50082-2:
Electrostatic discharge : IEC 1000-4-2
Radiated field : IEC 1000-4-3
Fast transients : IEC 1000-4-4
Electrical shocks : IEC 1000-4-5
Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC $1000-4-8$
(1) Reference conditions : $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}$, battery voltage : $9 \mathrm{~V} \pm 0.5 \mathrm{~V}$, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no external magnetic or electrical field, test sample centered sinusoidal signal : $10 \ldots . .100 \mathrm{~Hz}$

Ordering information	Reference
AmpFLEX ${ }^{\text {TM }} \mathbf{2 0 - 2 0 0 / 2 , ~ l e n g t h ~} 45 \mathrm{~cm}$ including user's manual	P01.1205.03

Flexible AC current probe Model A100 2000/2

Current	2000 A AC
Ouput	$1 \mathrm{mV} / \mathrm{A}$

Electrical specifications

Current range :
0.5... 2000 A AC

Output signal :
1 mV AC/A AC (2 V at 2000 A)

Accuracy (1):

Primary current	$0.5 \ldots 5 \mathrm{~A}$	$5 \ldots 2000 \mathrm{~A}$
\% accuracy of output signal	not specified	$\leq 1 \%$
Phase shift	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$

Bandwidth range :

$10 \mathrm{~Hz} . .20 \mathrm{kHz}$

Crest factor :

2.25 at nominal current

Max. current / Max. output voltage : No current limit, however maximum output is 4.5 V peak.
Load impedance : $\geq 1 \mathrm{M} \Omega$
Influence of Z load impedance : $\leq 0.1 \% / \mathrm{Z}$, (Z in $\mathrm{M} \Omega$)
Output impedance :
$1 \mathrm{k} \Omega$
DC voltage shift at output :
$\leq 2 \mathrm{mV}$ DC
Working voltage :
1000 V rms
Influence of adjacent conductor :
$\leq 1 \%$ of interference current at 50 Hz
($\leq 2 \%$ near catch)
Influence of conductor position in the loop :
$\leq 1 \%$ ($\leq 4 \%$ near catch)
Influence of sensor shape :
$\leq 1 \%$ for an oblong shape
Supply :
9 V alkaline battery (NEDA 1604A, IEC 6LR61)

Battery life :

≥ 150 hrs continuous,
$\geq 1000 \times 1$ min measurements
Low Battery signal :
Green LED : battery is OK
Green LED flashes : battery nearly worn out
No green LED : battery totally worn out
Overload signal : red LED

Mechanical specifications

Working temperature :

-10° to $+55^{\circ} \mathrm{C}$, (maximum temperature for sensor is $90^{\circ} \mathrm{C}$)

Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$

Temperature influence :

$\leq 0.5 \%$ of output signal per 10 K

Operating humidity:

for 0 to 95% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
$<0.2 \%$ of output signal from 10% to 85% of RH
Operating altitude :
0... 2000 m

Casing protection :
Case : IP 40 (IEC 529)
Flexible sensor : IP65 (IEC 529)
Drop test : 1 m (IEC 68-2-32)
Shocks resistance :
100 g (IEC 68-2-27)

Vibrations :

5/15/5 $1.5 \mathrm{~mm}-15 / 25 / 151 \mathrm{~mm}-25 / 55 / 25$
0.25 mm (IEC 68-2-6)

Self-extinguishing ability :

Case, flexible sensor and catch unit :
UL94 Vo

Dimensions :

Case : $140 \times 64 \times 28 \mathrm{~mm}$
Connector lead : 2 m (connects sensor to case)
Flexible sensor : $\varnothing 12 \mathrm{~mm} \pm 0,5 \mathrm{~mm}$

Weight :

Case : < 200 g
Flexible sensor : approx. 30 g per 10 cm length
Bending radius : $\geq 15 \mathrm{~mm}$

Colours :

Case and connection leads : dark grey, red flexible sensor with dark grey catch unit

Output :

2 safety jacks (4 mm) spacing 19 mm

Safety specifications

Electrical :

Double insulation or reinforced insulation between primary, secondary and outer parts of case normally handled, IEC 1010-1-1000V category III, pollution 2
Electromagnetic compatibility
(EMC Mark) :
EN 50081-1 : in conformity
EN 50082-2:
Electrostatic discharge : IEC 1000-4-2
Radiated field : IEC 1000-4-3
Fast transients : IEC 1000-4-4
Electrical shocks : IEC 1000-4-5
Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Reference conditions : $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}$, battery voltage : $9 \mathrm{~V} \pm 0.5 \mathrm{~V}$, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no external magnetic or electrical field, test sample centered sinusoidal signal : $10 \ldots . .100 \mathrm{~Hz}$.

Ordering information	Reference
AmpFLEX ${ }^{\text {TM }}$ 2000/2, length 45 cm including user's manual	P01.1205.01
AmpFLEX	2000/2, length 80 cm including user's manual

Flexible AC current probe
Model A100 200-2000/2

Current	200 A AC	2000 A AC
Ouput	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$

Electrical specifications

Current range :
0.5... 200 A AC
0.5... 2000 A AC

Output signal :
10 mV AC/A AC (2V at 200 A)
1 mV AC/A AC (2 V at 2000 A)
Accuracy (1):

Range	200 A		2000 A	
Primary current	$0.5 \ldots 5 \mathrm{~A}$	$5 \ldots 200 \mathrm{~A}$	$0.5 \ldots 5 \mathrm{~A}$	$0.5 \ldots 2000 \mathrm{~A}$
\% accuracy of output signal	not specified	$\leq 1 \%$	not specified	$\leq 1 \%$
Phase shift	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$

Bandwidth :

$10 \mathrm{~Hz} . .20 \mathrm{kHz}$

Crest factor :

2.25 at nominal current

Max. current / Max. output voltage : No current limit, however maximum output is 4.5 V peak.
Load impedance : $\geq 1 \mathrm{M} \Omega$
Influence of \mathbf{Z} load impedance : $\leq 0.1 \% / Z$, (in $M \Omega$)
Output impedance :
$1 \mathrm{k} \Omega$
DC voltage shift at output :
200 A range : $\leq 5 \mathrm{mV}$ DC
2000 A range $: \leq 2 \mathrm{mV}$ DC

Working voltage :

1000 V rms
Influence of adjacent conductor :
$\leq 1 \%$ of interference current at 50 Hz ($\leq 2 \%$ near catch)
Influence of conductor position in the loop:
$\leq 1 \%$ ($\leq 4 \%$ near catch)
Influence of sensor shape :
$\leq 1 \%$ for an oblong shape
Supply :
9 V alkaline battery (NEDA 1604A, IEC
6LR61)

Battery life :

≥ 150 hrs continuous,
$\geq 1000 \times 1$ min measurements

Low Battery signal :
Green LED : battery is OK
Green LED flashes : battery nearly worn out
No green LED : battery totally worn out
Overload signal : red LED
Mechanical specifications
Working temperature :
-10° to $+55^{\circ} \mathrm{C}$ (maximum temperature for sensor is $90^{\circ} \mathrm{C}$)

Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$

Temperature influence :
$\leq 0.5 \%$ of output signal per 10 K
Operating humidity :
fro 0 to 95% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
<0.2\% of output signal from 10% to 85% of RH
Operating altitude :
$0 . . .2000 \mathrm{~m}$
Casing protection :
Case: IP 40 (IEC 529)
Flexible sensor: IP65 (IEC 529)
Drop test : 1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)

Vibration :

5/15/5 $1.5 \mathrm{~mm}-15 / 25 / 151 \mathrm{~mm}-25 / 55 / 25$
0.25 mm (IEC 68-2-6)

Self-extinguishing ability :

Case, flexible sensor and catch unit :
UL94 V0

Dimensions :

Case : $140 \times 64 \times 28 \mathrm{~mm}$
Connector lead : 2 m (connects sensor to case)
Flexible sensor : $\varnothing 12 \mathrm{~mm} \pm 0,5 \mathrm{~mm}$
Weight :
Case : < 200 g
Flexible sensor : approx. 30 g per 10 cm length
Bending radius : $\geq 15 \mathrm{~mm}$

Colours :

Case and connection leads : dark grey, red flexible sensor with dark grey catch unit
Output :
2 safety jacks (4 mm) spacing 19 mm

Safety specifications

Electrical :
Double insulation or reinforced insulation between primary, secondary and outer parts of case normally handled, IEC 1010-1-1000V category III, pollution 2
Electromagnetic compatibility
(EMC Mark) :
EN 50081-1 : in conformity
EN 50082-2 :
Electrostatic discharge : IEC 1000-4-2
Radiated field : IEC 1000-4-3
Fast transients : IEC 1000-4-4
Electrical shocks : IEC 1000-4-5
Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Reference conditions: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}$, battery voltage : $9 \mathrm{~V} \pm 0.5 \mathrm{~V}$, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no external magnetic or electrical field, test sample centered sinusoidal signal : $10 \ldots 100 \mathrm{~Hz}$

Ordering information	Reference
AmpFLEX	
AmpFLEX ${ }^{\text {TM }}$ 200-2000/2, length 45 cm including user's manual	P01.1205.04

Flexible AC current probe
Model A100 300-3000/3

Current	300 A AC	3000 A AC
Ouput	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$

Electrical specifications

Current range :
0.5... 300 A AC
0.5... 3000 A AC

Output signal :
$10 \mathrm{mV} \mathrm{AC} / \mathrm{A} \mathrm{AC}(3 \mathrm{~V}$ at 300 A$)$
1 mV AC/A AC (3 V at 3000 A)
Accuracy (1):

Range	300 A		3000 A	
Primary current	$0.5 \ldots 5 \mathrm{~A}$	$5 \ldots 300 \mathrm{~A}$	$0.5 \ldots 5 \mathrm{~A}$	$0.5 \ldots 3000 \mathrm{~A}$
\% accuracy of output signal	not specified	$\leq 1 \%$	not specified	$\leq 1 \%$
Phase shift	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$	$\leq 0.7^{\circ}$

Bandwidth :

$10 \mathrm{~Hz} . .20 \mathrm{kHz}$

Crest factor :

1.5 nominal current

Max. current / Max. output voltage :
No current limit, however maximum output is 4.5 V peak.
Load impedance : $\geq 1 \mathrm{M} \Omega$
Influence of \mathbf{Z} load impedance :
$\leq 0.1 \% / \mathrm{Z}$, (Z in $\mathrm{M} \Omega$)
Output impedance :
$1 \mathrm{k} \Omega$
DC voltage shift at output :
300 A range : $\leq 5 \mathrm{mV}$ DC
3000 A range : $\leq 2 \mathrm{mV}$ DC
Working voltage :
1000 V rms
Common mode voltage :
600 V for category III installations and pollution level 2
Influence of adjacent conductor :
$\leq 1 \%$ of interference current at 50 Hz
($\leq 2 \%$ near catch)
Influence of conductor position in the loop :
$\leq 1 \%$ ($\leq 4 \%$ near catch)
Influence of sensor shape :
$\leq 1 \%$ for an oblong shape

Supply :

9 V alkaline battery (NEDA 1604A, IEC 6LR61)

Battery life :

$\geq 150 \mathrm{hrs}$ continuous,
$\geq 1000 \times 1$ min measurements
Low Battery signal :
Green LED : battery is OK
Green LED flashes : battery nearly worn out No green LED : battery totally worn out
Overload signal : red LED

Mechanical specifications

Working temperature :

-10° to $+55^{\circ} \mathrm{C}$, (maximum temperature for sensor is $90^{\circ} \mathrm{C}$)

Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$

Temperature influence :

$\leq 0.5 \%$ of output signal per 10 K
Operating humidity :
from 0 to 95% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$

Influence of humidity :

$<0.2 \%$ of output signal from 10% to 85% of RH
Operating altitude :
0... 2000 m

Casing protection :
Case : IP 40 (IEC 529)
Flexible sensor : IP65 (IEC 529)
Drop test : 1 m (IEC 68-2-32)
Shock resistance :
100 g (IEC 68-2-27)

Vibration :

5/15/5 $1.5 \mathrm{~mm}-15 / 25 / 151 \mathrm{~mm}-25 / 55 / 25$ 0.25 mm (IEC 68-2-6)

Self-extinguishing ability :

Case, flexible sensor and catch unit : UL94 V0

Dimensions :

Case : $140 \times 64 \times 28 \mathrm{~mm}$
Connector lead : 2 m (connects sensor to case)
Flexible sensor : $\varnothing 12 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$

Weight :

Case : < 200 g
Flexible sensor : approx. 30 g per 10 cm length
Bending radius : $\geq 15 \mathrm{~mm}$
Colours :
Case and connection leads : dark grey, red flexible sensor with dark grey catch unit

Output :

2 safety jacks (4mm) spacing 19 mm

Safety specifications

Electrical :
Double insulation or reinforced insulation between primary, secondary and outer parts of case normally handled, IEC 1010-
1-1000V category III, pollution 2
Electromagnetic compatibility

(EMC Mark) :

EN 50081-1 : in conformity
EN 50082-2 :
Electrostatic discharge : IEC 1000-4-2
Radiated field : IEC 1000-4-3
Fast transients : IEC 1000-4-4
Electrical shocks : IEC 1000-4-5
Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8

Ordering information	Reference
AmpFLEX ${ }^{\text {TM }} \mathbf{3 0 0 - 3 0 0 0 / 3}$, length 45 cm including user's manual	P01.1205.06
AmpFLEX ${ }^{\text {TM }} 300-3000 / 3$, length 80 cm including user's manual	P01.1205.07
AmpFLEX ${ }^{\text {TM }} \mathbf{3 0 0 - 3 0 0 0 / 3}$, length 120 cm including user's manual	P01.1205.08

Flexible AC current probe
Model A100 1000-10000/1

Electrical specifications

Current range :
0.5... 1000 A AC
0.5... 10000 A AC

Output signal :
1 mV AC/A AC (1 V at 1000 A)
0.1 mV AC/A AC (1 V at 10000 A)

Accuracy (1):

Range	1000 A		10000 A	
Primary current	$0.5 \ldots 5 \mathrm{~A}$	$5 \ldots 1000 \mathrm{~A}$	$0.5 \ldots 5 \mathrm{~A}$	$0.5 \ldots 10000 \mathrm{~A}$
$\%$ accuracy of output signal	not specified	$\leq 1 \%$	not specified	$\leq 1 \%$
Phase shift	$\leq 0.5^{\circ}$	$\leq 0.5^{\circ}$	$\leq 0.5^{\circ}$	$\leq 0.5^{\circ}$

Bandwidth :

$10 \mathrm{~Hz} . . .[45 . . .65]$... 20 kHz
Crest factor :
4.5 nominal current

Max. currents / Max. output voltage : No current limit, however maximum output is 4.5 V peak.
Load impedance $: \geq 1 \mathrm{M} \Omega$
Influence of \mathbf{Z} load impedance : $\leq 0.1 \% / \mathrm{Z}$, (Z in $\mathrm{M} \Omega$)
Output impedance : $1 \mathrm{k} \Omega$
DC voltage gap at output :
1000 A range : $\leq 2 \mathrm{mV}$ DC
10000 A range : $\leq 1 \mathrm{mV}$ DC
Working voltage :
1000 V rms
Influence of adjacent conductor :
$\leq 1 \%$ of interference current at 50 Hz
($\leq 2 \%$ near cath)
Influence of conductor position in the loop :
$\leq 1 \%$ ($\leq 4 \%$ near catch)
Influence of sensor shape :
$\leq 1 \%$ for an oblong shape
Supply :
9 V alkaline battery (NEDA 1604A, IEC 6LR61)

Battery life :

≥ 150 hrs continuous operating,
$\geq 1000 \times 1$ min measurements

Low Battery signal :
Green LED : battery is OK
Green LED flashes : battery nearly worn out No green LED : battery totally worn out
Overload signal : red LED

Mechanical specifications

Working temperature :

-10° to $+55^{\circ} \mathrm{C}$ (maximum temperature for sensor is $90^{\circ} \mathrm{C}$)

Storage temperature :

-40° to $+70^{\circ} \mathrm{C}$

Temperature influence :

$\leq 0.5 \%$ of output signal per 10 K
Operating humidity :
from 0 to 95% of RH with linear decrease beyond $35^{\circ} \mathrm{C}$
Influence of humidity :
<0.2\% of output signal from 10% to 85% of RH
Operating altitude :
0... 2000 m

Casing protection :
Case : IP 40 (IEC 529)
Flexible sensor : IP65 (IEC 529)
Drop test : 1 m (IEC 68-2-32)

Shock resistance :

100 g (IEC 68-2-27)

Vibration :

5/15/5 $1.5 \mathrm{~mm}-15 / 25 / 151 \mathrm{~mm}-25 / 55 / 25$
0.25 mm (IEC 68-2-6)

Self-extinguishing ability :

Case, flexible sensor and catch unit :
UL94 V0
Dimensions:
Case : $140 \times 64 \times 28 \mathrm{~mm}$
Connector lead : 2 m (connects sensor to case)
Flexible sensor : $\varnothing 12 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$

Weight :

Case : < 200 g
Flexible sensor : approx. 30 g per 10 cm length
Bending radius : $\geq 15 \mathrm{~mm}$
Colours :
Case and connection leads : dark grey, red flexible sensor with dark grey catch unit
Output:
2 safety jacks (4 mm) spacing 19 mm

Safety specifications

Electrical :

Double insulation or reinforced insulation between primary, secondary and outer parts of case normally handled, IEC 1010-
1-1000V category III, pollution 2
Electromagnetic compatibility
(EMC Mark) :
EN 50081-1 : in conformity
EN 50082-2 :
Electrostatic discharge : IEC 1000-4-2
Radiated field: IEC 1000-4-3
Fast transients : IEC 1000-4-4
Electrical shocks : IEC 1000-4-5
Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8
(1) Reference conditions: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}$, battery voltage : $9 \mathrm{~V} \pm 0.5 \mathrm{~V}$, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no external magnetic or electrical field, test sample centered sinusoidal signal : $10 \ldots 100 \mathrm{~Hz}$

Ordering information	Reference
AmpFLEX ${ }^{\text {T }} \mathbf{1 0 0 0 - 1 0 0 0 0 / 1 , ~ l e n g t h ~} 120 \mathrm{~cm}$ including user's manual	P01.1205.09

Flexible AC current probe
Model A100 on request

To complete the whole range of standard models presented in the preceding pages, CHAUVIN ARNOUX also offers to make special models to meet your particular needs.
To do so, it is necessary to give a reference as follows :

A 1	0	0

A

| B | B | B |
| :--- | :--- | :--- | \qquad D D D

with :
A : Number of ranges
BBB : Max. range value, in Amperes
CCC : Max. range sensitivity in mV / A
DDD : Length of flexible sensor in $\mathrm{cm}(\min \times 40=40 \mathrm{~cm}, \max =990 \mathrm{~cm})$ for a section of 10 cm

Currently available values :

Model
$20-200 \mathrm{~A} / 2 \mathrm{~V}$
$2000 \mathrm{~A} / 2 \mathrm{~V}$
$200-2000 \mathrm{~A} / 2 \mathrm{~V}$
$300-3000 \mathrm{~A} / 3 \mathrm{~V}$
$1000-10000 \mathrm{~A} / 1 \mathrm{~V}$

	1	0	A
A	1	0	2
	1	0	1
	1	0	2
	1	0	2
	1	0	2

B	\mathbf{B}	\mathbf{B}
2	0	0
2	K	0
2	K	0
3	K	0
1	0	K

\mathbf{c}	\mathbf{c}	\mathbf{c}
X	1	0
X	X	1
X	X	1
X	X	1
0	.	1

D D D

Example 1:

A flexible sensor AmpFLEX A100, with 2 ranges 200-2000A and length $5 \mathbf{m}$ would be represented by :

Example 2 :
A flexible sensor AmpFLEX, range 2000 A length 90 cm would be represented by :

As Chauvin Arnoux is always wishing to improve its products, do not hesitate to contact us for other configurations.

Flexible AC current probe Model A101

The AmpFLEX offers perfect linearity, low phase shift, a wide range of measurements (up to several $k A$) together with unrivalled ease of use.

The A101 series is Chauvin Arnoux's response to all the measurement instrument manufacturers wishing to integrate AmpFLEX solutions into their product lines.

Description

The A101 AmpFLEX sensor is composed of an active element (Rogowski coil) and a connection lead

It is necessary to add on an electronic processing system (not included), in order to complete this measurement device

Chauvin Arnoux has added an extra step to the manufacturing process of the A101 probe which guarantees their interchangeability. This is essential in applications such as three-phase measurements where several identical probes are used.

Electrical specifications

Voltage at sensor terminals :
$46 \mu \mathrm{~V} / \mathrm{A}(-15 \% \ldots+10 \%)$ at 50 Hz
Linearity * : < 0.3\%
Phase shift * $: \leq 0.5^{\circ}$ at 50 Hz
Error of interchangeability :
$\leq 0.5 \%$ (maximum error between 2 sensors for the same measurement point).

Frequency range

Depends on the electronics with which it is used.
Working voltage : 1000 Vrms or DC

Mechanical specifications

Operating temperature :
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature :
$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Max temperature of measured cable : $\leq 90^{\circ} \mathrm{C}$

Operating altitude :
0... 2000 m

Maximum conductor size :
Depending on sensor length.
Casing protection :
IP65 EN 60529

Self-extinguishing ability :

External cover, catch unit, connection lead : UL94 V0

Dimensions:

Sensor Ø : 12 mm

Weight :

Approx. 30 g per 10 cm length

Colours:

Sensor: Red
Catch unit : dark grey

Output:

According to configuration (refer to § Connections)
Connections :
According to configuration (refer to § Connections)

[^10]
Configurations

- Category (fixed field)

Level 1

- Lead length in decimetres

Min value : $\mathbf{0 5}(50 \mathrm{~cm})$
Max value : 99 (9.9 m)
Increment per 1 dm section (10 cm)
■ Length of connection lead in decimetres
Min value : 05 (50 cm)
Max value : 99 ($9,9 \mathrm{~m}$)
Increment per section of $1 \mathrm{dm}(10 \mathrm{~cm})$
■ Measurement range (refer to additional information)
1 : electronic diagram CA1
2 : electronic diagram CA2
3 : electronic diagram CA3
4 : diagram suited for C.A 8310

- Connections

\mathbf{X} : lead without connection unit
C : specific lead
■ Calibration for interchangeability (refer to additional information)
N : without
O : with

- Special feature

X1 : plain sensor without CHAUVIN ARNOUX logo, with norms and AmpFLEX ${ }^{T M}$ inscriptions, plain packing with instruction manual.
X2 : plain sensor without CHAUVIN ARNOUX logo, with norms and AmpFLEX ${ }^{T M}$ inscriptions, plastic bag packing, instruction manual stapled on the plastic bag.
C1 : same as CHAUVIN ARNOUX sensor plain packing box with instruction manual
C2 : same as CHAUVIN ARNOUX sensor plastic bag packing, instruction manual stapled on the plastic bag.

Level 2

■ Connections (refer to additional information)
XXX1 : circular lead 2 conductors + bare and tinned
BNC1 : coaxial lead + insulated coaxial plug
FRB1 : circular lead 2 conductors + screening with FRB connector D01 model, type 1 (male pins)
FRB2 : circular lead 2 conductors + screening with FRB connector D01 model, type 2 (sockets)

■ Colour of connector(refer to additional information)
XX : no connector
BK : black
RD : red
BU : blue
GN : green
WH : white
YE : yellow
■ + connection point
1, 2 or 3 : contact N° connected to +
X : no connector

- - connection point

1, 2 or 3 : contact N° connected to -
X : no connector
\square connected protection
1,2 or 3 : contact N° connected to screening
X : not connected or no connector
■ Interchangeability resistors (refer to additional information)
I : included in sensor
F : resistors supplied
D: values are indicated in the manual included with AmpFLEX (resistors not supplied)
X : no calibration for interchangeability

Specific configuration of sensors for C.A 8310 Power \& Harmonics Analyser

To complete the range of standard sensors for this product, A190 sensors of different lengths can be used (A190 is an A101 special feature).

Select :

Blank spaces are refer to :

- level 1 : sensor lengths and connection lead to be chosen
- level 2 : colour of connector

Additional information

- Measurement range (electronic diagram)

Choosing the measurement range depends on sensitivity required and on electronic supply voltages.
Example : For a supply voltage of $\pm 5 \mathrm{~V}$, electronic output voltage will be limited to $\pm 4.5 \mathrm{~V}$ peak to peak, that is to say approximately 3 V RMS (4.5 $\mathrm{V} / \sqrt{2}$) if measured signal is sinusoidal.
The different diagrams refer to sensitivity ranges according to the following chart :

Diagram	CA1	CA2	CA3
Sensitivity Max. measurement range for $\mathrm{a} \pm 5 \mathrm{~V}$ supply Max. measurement range for $\mathrm{a} \pm 15 \mathrm{~V}$ supply $9.1 \mathrm{mV} / \mathrm{A} \ldots 1 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A} \ldots . .10 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A} \ldots 100 \mathrm{mV} / \mathrm{A}$	

■ Interchangeability calibration

For applications that require the use of several sensors, it is necessary to ensure that all the sensors used on a single measuring instrument have identical output specifications.
Calibration is carried out for a standard electronic circuit (refer to following chart) at input level (integrator).

Combined electronic

Is the standard diagrams of input level, referring to the different measurement ranges required.

Resistors and integrator condenser value according to sensitivity

Diagram	CA1	CA2	CA3
Sensitivity	$0.1 \mathrm{mV} / \mathrm{A}$ to $1 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$ to $10 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$ to $100 \mathrm{mV} / \mathrm{A}$
C 1	100 nF	10 nF	1 nF
$\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3$		$4.12 \mathrm{k} \Omega$	

C1 preferably in polycarbonate (tolerance 5\%).
R1, R2 and R3 metallic coating, tolerance 1%, power $1 / 8 \mathrm{~W}$ temperature 50 ppm.
Standard technology or CMS.

- Connections

Connector		Connections selection	Colour of the connector
BNC1 Coaxial leads + insulated coaxial plug			BK : black RD : red ${ }^{(1)}$ BU : blue
FRB1: FRB D01 model Contact : male FRB2 : FRB D01 model Contact : female		$\bullet_{3} \bullet_{2}$	BK : black RD : red BU : blue GN : green ${ }^{(1)}$ WH: white YE :yellow ${ }^{(1)}$

${ }^{(1)}$ colour not in stock

- Interchangeability resistors

In order to enable interchangeability of sensors, the calibration process consists of : defining a value of a resistor which will be put in the measurement circuit.
In fact, this (or these) resistors can be integrated into connectors FRB1 or FRB2.
Contact us for details of other types of connectors.

Ordering information	Reference
A101 AmpFLEX without electronic unit	Contact us
Accessories :	
"Green" catches (set of 10)	P01.1019.21
""Red" catches (set of 10)	P01.1019.22
"Purple" cathes (set of 10)	P01.1019.23
"Black" catches (set of 10)	P01.1019.24
"Blue" catches set of 10)	P01.1019.25
"Brow" " catches (set of 10)	P01.1019.26
"White" catches (set of f 10)	P01.1019.27
"Grey" catches (set of 10)	P01.1019.28
9 assorted colours (9 sets of 2)	P01.1019.29
Coloured catches C.A 8310 ("blue", "red", "black" set of 2)	P01.1019.30

K Series

The K series is a new product range possessing exceptional measurement capabilities.
Extremely compact in design, these "micro-probes" are designed for highly accurate measurement of very low currents.

Their small dimensions and shape make them ideal for probing into tight spaces where access is limited, as is the case on most switchboards, 4-20 A process loops or vehicle wiring looms for example.

These "K" series current probes make excellent work companions for multimeters and any other instrument able to make use of their high sensitivity, dynamic range and ability to indicate the shapes of signals
and waveforms. They give an AC+DC output signal that is proportional to the measured current, without needing to change the range or filter the signal. RMS measurements are possible with DC+AC components.

There are two different types of K series current probes available.
Model K1 gives a $1 \mathrm{mV} / \mathrm{mA}$ output and lends itself to a variety of different applications, biased towards low current measurement.

Model K2 has a greater level of sensitivity with its 10 $\mathrm{mV} / \mathrm{mA}$ output.

Current	4500 mA DC 3000 mA AC
Ouput	$1 \mathrm{mV} / \mathrm{mA}$

The K1 model measures currents as low as $100 \mu \mathrm{~A} A C$ or DC.
The clamp provides a proportional output signal enabling direct readings on multimeters.

Electrical specifications

Current range:

$1 \mathrm{~mA} . . . \pm 4.5$ A DC
$1 \mathrm{~mA} . .3 \mathrm{~A} \mathrm{rms}$ (sinusoidal)
$1 \mathrm{~mA} . .4$.5 A peak, square and steps
Output (output voltage):

$1 \mathrm{mV} / \mathrm{mA}$

Resolution:

DC: $50 \mu \mathrm{~A}$ typical
AC: $100 \mu \mathrm{~A}$ typical
Accuracy (1):

- DC current

Primary current	$1 \ldots 10 \mathrm{~mA}$	$10 . . .120 \mathrm{~mA}$	$120 . .4500 \mathrm{~mA}$
\% accuracy of output signal	$2 \% \pm 0.2 \mathrm{mV}$	$2 \% \pm 0.1 \mathrm{mV}$	1%

■AC current from 45 to 65 Hz

Primary current	$1 \ldots 10 \mathrm{~mA}$	$10 \ldots 120 \mathrm{~mA}$	$120 \ldots 3000 \mathrm{~mA}$
\% accuracy of output signal	$3 \% \pm 0.3 \mathrm{mV}$	$3 \% \pm 0.1 \mathrm{mV}$	1%

Frequency response:

DC to 2 kHz (at -3 dB)
Load impedance:
$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$
Output noise:
$<100 \mu \mathrm{~V}$, DC to 3 kHz
Output impedance:
220Ω
Inductance of clamp:
$<1 \mu \mathrm{H}$
Rise time:
< 200 us, 10% to 90%
Fall time:
< 200 us, 90% to 10%
Influence of adjacent conductors:
(50 Hz at 23 mm from the clamp): $<100 \mu \mathrm{~A} / \mathrm{A}$
Influence of earth field:
< $120 \mu \mathrm{~A}$
Batteries:
9V alkaline, NEDA 1604, 6LR61
or IEC 6 LF22
Battery level indication:
Green LED when battery voltage $>6.5 \mathrm{~V}$

Battery charge life:
Approximately 20 hours
Overload indication:
Red LED indicating momentary or continuous overload.

Mechanical specifications

Operating temperature:
$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature:
$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Influence of temperature:
< $1000 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ or $1 \% / 10^{\circ} \mathrm{C}$
Humidity:
$<95 \%$ for $<35^{\circ} \mathrm{C}, 75 \%$ at $+55^{\circ} \mathrm{C}$
Operating altitude :
0 to 2000 m
Adjustment of DC zero:
approximately $\pm 25 \mathrm{~mA}$ by turning the button on the bottom of the housing
Clamping capacity:
$\varnothing 3.9 \mathrm{~mm}$

Protection casing:

Housing: IP 40 as per IEC 529
Drop test:
1.0 m as per IEC 68-2-32

Impacts:
100 g as per IEC 68-2-27
Vibration:
As per IEC 68-2-6
Frequencies:
5 to 15 Hz , amplitude: 1.5 mm
15 to 25 Hz : amplitude: 1 mm
25 to 55 Hz : amplitude: 0.25 mm
Dimensions (electronic module):
$124 \times 64 \times 28 \mathrm{~mm}$
Dimensions (probe):
$111 \times 15 \times 25 \mathrm{~mm}$
Cable length:
1.5 m

Weight:
250 g
Colour:
Dark grey
Output:
Two 4 mm safety terminals 19 mm apart.

Safety specifications

Operating voltage:

300 V as per IEC 1010-1 cat. II
Electromagnetic compatibility:

- Immunity (EN 50082-1):

Class A
DC: 15 mV for 0
AC (60 Hz): 2 dB from $10 \mathrm{~mA} . . .4 .5 \mathrm{~A}$

- Emissivity (as per EN 50081-1): negligible
(1) Reference conditions: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 20$ to $75 \% \mathrm{RH}$, batteries $9 \mathrm{~V} \pm 0,1 \mathrm{~V}$, earth's magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no AC field, DC or sinusoidal current from 45 to 65 Hz

To order	Reference
K1 model AC/DC ammeter clamp in carrying case with battery and user's manual	P01.1200.67A

K2 Model

Current	450 mA DC 300 mA AC
Ouput	$10 \mathrm{mV} / \mathrm{mA}$

The K2 model measures currents as low as $100 \mu \mathrm{~A} A C$ or DC.
The probe has a proportional output for direct readings on multimeters.

Electrical specifications

Current range:

$0.1 \ldots \pm 450 \mathrm{~mA}$ DC
0.1... 300 mA rms (sinusoidal)
0.1... 450 mA peak, square signal and steps

Output (output voltage):
$10 \mathrm{mV} / \mathrm{mA}$

Resolution:
DC: $50 \mu \mathrm{~A}$ typical
AC: $100 \mu \mathrm{~A}$ typical
Accuracy (1):

- DC current

Primary current	$0.1 \ldots 1 \mathrm{~mA}$	$1 \ldots 12 \mathrm{~mA}$	$12 \ldots 450 \mathrm{~mA}$
$\%$ accuracy of output signal	$3 \% \pm 2 \mathrm{mV}$	$2 \% \pm 2 \mathrm{mV}$	1%

- AC current from 45 to 65 Hz

Primary current	$0.1 \ldots 1 \mathrm{~mA}$	$1 \ldots 12 \mathrm{~mA}$	$12 \ldots 300 \mathrm{~mA}$
\% accuracy of output signal	$3 \% \pm 0.5 \mathrm{mV}$	$2 \% \pm 0.5 \mathrm{mV}$	1%

Frequency response:

DC to 1.5 kHz (at -3 dB)
Load impedance:
$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$
Output noise: < $100 \mu \mathrm{~V}$, DC to $1,5 \mathrm{kHz}$
Output impedance: 200Ω
Inductance of clamp: $<1 \mu \mathrm{H}$
Rise time:
< 200 us, 10% to 90%

Fall time:

< 200 ss, 90% to 10%
Influence of adjacent conductors:
(50 Hz at 23 mm from the clamp):
$<100 \mu \mathrm{~A} / \mathrm{A}$
Influence of earth field:
< $120 \mu \mathrm{~A}, 0$...max.
Max. current
$100 \mathrm{~A} A C$ rms or $D C$ with current limitation according to frequency, above 400 Hz

Batteries:

9V alkaline, NEDA 1604, 6LR61
or IEC 6 LF22
Indication of battery level:
Green LED when battery voltage > 6.5 V

Battery charge life :

 Approximately 20 hoursOverload indication:
Red LED indicating momentary or continuous overload.

Mechanical specifications

Operating temperature:
$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature:
$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Influence of temperature:
< $500 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ or $0.5 \% / 10^{\circ} \mathrm{C}$

Humidity:

$<95 \%$ at $<35^{\circ} \mathrm{C}, 75 \%$ at $55^{\circ} \mathrm{C}$

Operating altitude :

 0 to 2000 mAdjustment of DC zero:
approximately $\pm 25 \mathrm{~mA}$ by turning the button on the bottom of the housing (10 turns)
Clamping capacity:
$\varnothing 3.9 \mathrm{~mm}$
Protection level:
IP 40 as per IEC 529

Drop test:

1.0 m as per IEC 68-2-32

Impacts:
100 g as per IEC 68-2-27

Vibration:

As per IEC 68-2-6
Frequency range:
5 ... 15 Hz , amplitude: 1.5 mm
$15 . . .25 \mathrm{~Hz}$: amplitude: 1 mm
$25 \ldots 55 \mathrm{~Hz}$: amplitude: 0.25 mm
Dimensions (electronic module):
$124 \times 64 \times 28 \mathrm{~mm}$
Dimension (clamp):
$111 \times 15 \times 25 \mathrm{~mm}$
Cable length:
1.5 m

Weight :
250 g
Colour:
Dark grey
Output:
Two 4 mm safety terminals 19 mm apart (standard).

Safety specifications

Operating voltage:
300 V as per IEC 1010-1 cat. II
Electromagnetic compatibility:
■ Immunity (EN 50082-1):
Class A
DC: 15 mV for 0
AC $(60 \mathrm{~Hz}): 2 \mathrm{~dB}$ from $10 \mathrm{~mA} . . .4 .5 \mathrm{~A}$

- Emissivity (as per EN 50081-1): negligible
(1) Reference conditions: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 20$ to 75% RH, batteries $9 \mathrm{~V} \pm 0,1 \mathrm{~V}$, earth's magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no AC field, DC or sinusoidal current from 45 to 65 Hz

To order	Reference
K2 model AC/DC ammeter clamp in carrying case with battery and user's manual	P01.1200.74A

E Series

The E series clamps use Hall effect technology for the measurement of AC and DC currents from several milliamps to over 100 A .
The elongated, narrow design of these clamps makes it possible to probe into tight spaces which comes into it's own when carrying out measurements in cable bundles or in other restrictive areas like circuit boards, motor controls or motor vehicle electric's.
Their inherent low phase shifting also goes to ensure reliable and accurate power measurements.

These clamps have a voltage output (mv) and their ability to measure AC and DC signals is useful for true RMS measurements.
Model E6N is the most sensitive and hence the most suited to low current measurement.
The E Series clamps all make excellent work mates for multimeters, recorders and logging equipment etc. Model E3N can be used directly linked up to an oscilloscope.

Clamp-on AC/DC current probe
Model E1N

Current	$2 \mathrm{~A} \mathrm{AC} / \mathrm{DC}$	$150 \mathrm{~A} \mathrm{AC/DC}$
Ouput	$1 \mathrm{mV} / \mathrm{mA}$	$1 \mathrm{mV} / \mathrm{A}$

Electrical Specification

Current Range:

50 mA ... 150 A AC/DC on two ranges
Output signal:
$1 \mathrm{mV} / \mathrm{mA}$ and $1 \mathrm{mV} / \mathrm{A} A C$ or $D C$
Accuracy and phase shift (1):

Range	$1 \mathrm{mV} / \mathrm{mA}(1 \mathrm{~V} / \mathrm{A})$	$1 \mathrm{mV} / \mathrm{A}$
Current range	$\begin{aligned} & 50 \mathrm{~mA} \ldots 2 \mathrm{~A} \mathrm{DC} \\ & 50 \mathrm{~mA} . . .1 .5 \mathrm{~A} \mathrm{AC} \end{aligned}$	$500 \mathrm{~mA} . . .150 \mathrm{~A}$
\% Accuracy of output signal	$2 \% \pm 20 \mathrm{mV}$	$\begin{aligned} & \text { - } 500 \mathrm{~mA} \ldots 100 \mathrm{~A} \mathrm{AC} / \mathrm{DC}: \\ & 1.5 \% \pm 30 \mu \mathrm{~V} \\ & \text { - } 100 \ldots 150 \mathrm{~A} \mathrm{DC} \mathrm{:} 3 \% \\ & \text { - } 100 \ldots 120 \mathrm{~A} \mathrm{AC}: 3 \% \end{aligned}$
Frequency range	DC... 2 kHz	DC... 8 kHz
Phase shift	DC... $65 \mathrm{~Hz}: 3^{\circ}$	DC... 65 Hz : 1°
Min. load impedance	$\geq 10 \mathrm{k} \Omega$	$\geq 2 \mathrm{k} \Omega$
Noise	DC... $1 \mathrm{~Hz}: 3 \mathrm{mV}$ $1 \mathrm{~Hz} . .10 \mathrm{kHz}: 10 \mathrm{mV}$ $10 . . .100 \mathrm{kHz}$: 18 mV	DC... $1 \mathrm{~Hz}: 3 \mu \mathrm{~V}$ $1 \mathrm{~Hz} \ldots 10 \mathrm{kHz}: 10 \mu \mathrm{~V}$ $10 . . .100 \mathrm{kHz}: 18 \mu \mathrm{~V}$

Safety Specification

Electrical:

600 V category III, pollution: 2 300 V category IV, pollution: 2

Electromagnetic Compatibility

(EC Stamp):

EN 50081-1: class B
EN 50082-2:

- Electrical discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic Field to $50 / 60 \mathrm{~Hz}$ IEC $1000-4-8$

Working voltage:

600 Vrms max
Common mode voltage:
600 Vrms max

Battery:

9 V Alkaline (NEDA 1604A, IEC 6LR61)
Battery life:
70 Hrs approx.
Typical consumption:
6 mA
Battery level indicator:
Green LED when > 6.5 V

Mechanical Specification

Operating temperature:
0° to $+50^{\circ} \mathrm{C}$
Storage temperature:
-30° to $+80^{\circ} \mathrm{C}$
Temperature influence:
$<0.2 \%$ per ${ }^{\circ} \mathrm{C}$
Operating relative humidity:
$+10^{\circ}$ to $+30^{\circ} \mathrm{C}: 85 \pm 5 \% \mathrm{RH}$ (without condensation)
$+40^{\circ}$ to $+50^{\circ} \mathrm{C}: 45 \pm 5 \% \mathrm{RH}$ (without condensation)
Operating altitude:
0 to 2000 m

Max. jaw insertion capacity:
11.8 mm

Zero adjustment:

20 turn potentiometer ($\pm 1.5 \mathrm{~A}$ min)

Drop test:

1 m on a 38 mm container of oak on concrete, test in accordance with IEC 1010

Mechanical shock:

100 g , in accordance with IEC 68-2-27

Vibration:

10/55/10 Hz, 0.15 mm
test in accordance with IEC 68-2-6
Casing protection:
IP20 in accordance with IEC 529

Self-extinguishing ability:

Casing : UL94 V2

Dimensions:

$231 \times 36 \times 67 \mathrm{~mm}$

Weight:

330 g with batteries
Colour:
Dark grey
Output:
Via 1.5 m double-wound cable with reinforced or double insulation, ended with two elbowed 4 mm male safety plugs.
(1) Reference Conditions : $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no current carrying conductor nearby, centred test sample, load impedance $1 \mathrm{M} \Omega$

To order	Reference
Clamp on AC/DC current probe model E1N with battery and user's manual	P01.1200.30A

Clamp-on AC/DC current probe for oscilloscope use
Model E3N (Insulated current probe)

Current	10 A peak	100 A peak
Ouput	$100 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$

Electrical Specification

Output signal:
In mV (1000 mV peak max)
Accuracy and phase shift (1):

Range	$100 \mathrm{mV} / \mathrm{A}$	$10 \mathrm{mV} / \mathrm{A}$
Current range	$50 \mathrm{~mA} . . .10$ A peak	1 A... 100 A peak
\% Accuracy of Output signal	$3 \% \pm 5 \mathrm{mV}$	- $500 \mathrm{~mA} . . .40$ A peak: $4 \% \pm 500 \mu \mathrm{~V}$ - 40... 100 A peak : 15% max at 100 A
Frequency Range	DC... $100 \mathrm{kHz}(-3 \mathrm{~dB})$	
Phase shift	DC... $65 \mathrm{~Hz}:<1.5^{\circ}$	DC... $65 \mathrm{~Hz}:<1^{\circ}$
	$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$	
Insertion Impedance	0.01Ω	
Noise	6 mV	$600 \mu \mathrm{~V}$
Slew Rate	$0.3 \mathrm{~V} / \mu \mathrm{s}$	$20 \mathrm{mV} / \mu \mathrm{s}$
Rise/Fall Time	$3 \mu \mathrm{~s}$	$4 \mu \mathrm{~s}$

Working voltage:

600 Vrms max
Common mode voltage:
600 Vrms max
Influence of adjacent conductor:
$<0.2 \mathrm{~mA} / \mathrm{A} \mathrm{AC}$
Influence of conductor positioning in the clamp's jaws:
0.5% of the reading at 1 kHz

Battery:

9 V Alkaline (NEDA 1604A, IEC 6LR61)

Battery life:

55 Hrs approx.
Typical consumption:
8.6 mA

Battery level indicator:
Green LED when > 6.5 V
Overload indicator :
Red LED indicates the measured current is too high for the selected range.

Mechanical Specification

Operating temperature:
0° to $+50^{\circ} \mathrm{C}$
Storage temperature:
-30° to $+80^{\circ} \mathrm{C}$
Temperature Influence:
< 0.2% per ${ }^{\circ} \mathrm{C}$
Operating Relative Humidity:
$\square+10^{\circ}$ to $+30^{\circ} \mathrm{C}$:
$85 \pm 5 \%$ RH (without condensation)
-40° to $+50^{\circ} \mathrm{C}$:
$45 \pm 5 \% \mathrm{RH}$ (without condensation)
Operating altitude:
0 to 2000 m
Max. jaw insertion capacity:
11.8 mm Ø

Zero adjustment:
20 turn potentiometer
Drop test:
1 m on a 38 mm container of oak on concrete, test in accordance with IEC 1010

Mechanical shock:
100 g , in accordance with IEC 68-2-27
Vibration:
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$
test in accordance with IEC 68-2-6
Casing protection:
IP20 in accordance with IEC 529
Self-extinguishing ability:
Casing: UL94 V2
Dimensions:
$231 \times 36 \times 67 \mathrm{~mm}$

Weight:

330 g with battery
Colour:
Dark grey
Output:
Via 2 m coaxial cable ended with BNC insulated plug.

Safety Specification

Electrical:
600 V category III, pollution: 2
300 V category IV, pollution: 2
Electromagnetic Compatibility

(EC Stamp):

EN 50081-1: class B
EN 50082-2:

- Electrical Discharge IEC 1000-4-2
- Radial Field IEC 100-4-3
- Rapid transients IEC 1000-4-4
- Magnetic Field to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8

To order	Reference
Clamp-on AC/DC current probe model E3N for oscilloscope use, with battery and user's manual	P01.1200.43A

Clamp-on AC/DC current probe
Model E6N

Current	$2 \mathrm{~A} \mathrm{AC} / \mathrm{DC}$	$80 \mathrm{~A} \mathrm{AC} / \mathrm{DC}$
Ouput	$1 \mathrm{mV} / \mathrm{mA}$	$10 \mathrm{mV} / \mathrm{A}$

Electrical Specification

Current range:
$5 \mathrm{~mA} . . .80 \mathrm{~A} \mathrm{AC/DC} \mathrm{on} \mathrm{two} \mathrm{ranges}$

Output signal:

$1 \mathrm{mV} / \mathrm{mA}$ and $10 \mathrm{mV} / \mathrm{A} A C$ or DC
Accuracy and Phase shift (1):

Range	$1 \mathrm{mV} / \mathrm{mA}(1 \mathrm{~V} / \mathrm{A})$	$10 \mathrm{mV} / \mathrm{A}$
Current range	$\begin{aligned} & 5 \mathrm{~mA} \ldots 2 \mathrm{~A} \mathrm{DC} \\ & 5 \mathrm{~mA} \ldots 1.5 \mathrm{~A} \mathrm{AC} \end{aligned}$	$\begin{aligned} & 20 \mathrm{~mA} \ldots 80 \mathrm{~A} \mathrm{DC} \\ & 20 \mathrm{~mA} . . .80 \mathrm{~A} \mathrm{AC} \end{aligned}$
\% Accuracy of output signal	$2 \% \pm 5 \mathrm{mV}$	$\begin{aligned} & .20 \mathrm{~mA} \ldots 50 \mathrm{~A} \mathrm{DC:} \\ & 4 \% \pm 200 \mu \mathrm{~V} \\ & .50 \text { to } 80 \mathrm{~A} \mathrm{DC:} 12 \% \\ & .20 \mathrm{~mA} . . .40 \mathrm{~A} \mathrm{AC}: \\ & 4 \% \pm 200 \mu \mathrm{~V} \\ & .40 \text { to } 60 \mathrm{~A} \mathrm{AC:} 12 \% \end{aligned}$
Frequency range	DC... 2 kHz	DC... 8 kHz
Phase shift	DC... $65 \mathrm{~Hz}: 1^{\circ}$	DC... $65 \mathrm{~Hz}: 1^{\circ}$
Min. load impedance	$>10 \mathrm{k} \Omega$	$>2 \mathrm{k} \Omega$
Noise	DC... $1 \mathrm{~Hz}: 2 \mathrm{mV}$ $1 \mathrm{~Hz} . .10 \mathrm{kHz}: 10 \mathrm{mV}$ $10 . . .100 \mathrm{kHz}: 10 \mathrm{mV}$	$\text { DC... } 1 \mathrm{~Hz}: 20 \mu \mathrm{~V}$ $1 \mathrm{~Hz} . .10 \mathrm{kHz}: 100 \mu \mathrm{~V}$ $10 . . .100 \mathrm{kHz}: 100 \mu \mathrm{~V}$

Overload:

120 A continuous

Working voltage:

600 Vrms max
Common mode voltage:
600 Vrms max

Battery:

9 V Alkaline (NEDA 1604A, IEC 6LR61)

Battery life:

70 Hrs approx.
Typical consumption:
6 mA
Battery level indicator:
Green LED when > 6.5 V

Mechanical Specification

Operating temperature:
0° to $+50^{\circ} \mathrm{C}$
Storage temperature:
-30° to $+80^{\circ} \mathrm{C}$

Temperature influence:

< 0.2% par ${ }^{\circ} \mathrm{C}$
Operating Relative Humidity:
$+10^{\circ}$ to $+30^{\circ} \mathrm{C}: 85 \pm 5 \% \mathrm{RH}$ (without condensation)
$+40^{\circ}$ to $+50^{\circ} \mathrm{C}: 45 \pm 5 \% \mathrm{RH}$
(without condensation)
Operating Altitude:
0 to 2000 m
Max. jaw insertion capacity:
11.8 mm

Zero adjustment:

20 turn potentiometer ($\pm 1.5 \mathrm{~A}$ min)
Drop test:
1 m on 38 mm of oak on concrete, test in accordance with IEC 1010

Mechanical shock:

100 g , in accordance with IEC 68-2-27

Vibration

10/55/10 Hz, 0.15 mm
test in accordance with IEC 68-2-6

Casing protection:

IP20 in accordance with IEC529

Self-extinguishing ability:

Casing: UL94 V2

Dimensions:

$231 \times 36 \times 67 \mathrm{~mm}$
Weight:
330 g with battery
Colour:
Dark grey
Output:
Via 1.5 m double wound cable with reinforced or double insulation, ended with two elbowed 4 mm male safety plugs.

Safety Specification

Electrical:

600 V category III, pollution: 2
300 V category IV, pollution: 2

Electromagnetic Compatibility

(EC stamp):

EN 50081-1: class B
EN 50082-2:

- Electrical discharge IEC 1000-4-2
- Radial field IEC 100-4-3
- Rapid transients IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8

To order	Reference
Clamp-on AC/DC current probe model E6N with battery and user's manual	P01.1200.40A

PAC Series

The PAC series is a range of professional AC/DC clamp-on current probes designed to meet the very latest in safety and performance standards.
There are two different jaw designs available for the clamping of cables and small busbars.
The PAC series clamps operate on the Hall effect principle, giving current measurement up to 1500 A DC and 1000 A AC. The electronics and the battery are all located in the clamp handles. There are two sensitivity levels available: $1 \mathrm{mV} / \mathrm{A}$ and $10 \mathrm{mV} / \mathrm{A}$.

A push button operates the automatic DC zeroing on models PAC 11, 12, 21 and 22.
Models PAC 10 and PAC 20 have potentiometer operated zero adjustment.
True RMS measurement is even possible on inputs containing DC components. Phase shifting poses no problem either, hence the PAC series is very well adapted to power measurement applications.
Models PAC 12 and PAC 22 are designed for use with oscilloscopes and other BNC input instruments.

Current	400 A AC 600 A DC
Ouput	$1 \mathrm{mV} / \mathrm{A}$

Model PAC10 operates using the Hall effect, for precise measurement of $A C$ or DC currents.
It has a mV output so that a direct reading may be made on a multimeter or logging equipment etc.

Electrical Specification

Current range:

0.5 to 400 A AC (600 A peak)
0.5 to 600 A DC

Output signal:
$1 \mathrm{mV} / \mathrm{A}$
Accuracy (1):

Current range	$1 \ldots 100 \mathrm{~A}$	$100 \ldots 400 \mathrm{~A}$
\% Accuracy of	$1.5 \% \pm 1 \mathrm{mV}$	2%
output signal		$400 \ldots 600 \mathrm{~A} \mathrm{DC}: 2.5 \%$

Phase shift (1):

Current range	$10 \ldots 200 \mathrm{~A}$	$200 \ldots 400 \mathrm{~A}$
Phase shift from 45 to 65 Hz	$<2.5^{\circ}$	$<2^{\circ}$

Overload:

2000 A DC and 1000 A AC up to 1 kHz

Bandwidth:

DC up to 5 kHz

Noise:

DC up to $1 \mathrm{kHz}:<1 \mathrm{mV}$
DC up to $5 \mathrm{kHz}:<1.5 \mathrm{mV}$
0.1 Hz to $5 \mathrm{kHz}:<500 \mu \mathrm{~V}$

Load impedance:
$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$
Insertion impedance:
$0.39 \mathrm{~m} \Omega$ at $50 \mathrm{~Hz}, 58 \mathrm{~m} \Omega$ at 1000 Hz

Rise/Fall time:

$<100 \mu$ s to go from 10 to 90% of Vout
Working voltage:
600 Vrms
Common mode voltage:
600 Vrms
Influence of adjacent conductor:
$<10 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor positioning
in clamp's jaws:
0.5\% of reading

Battery:

9V Alkaline (NEDA 1604 A, IEC 6LR61)
Battery level indicator:
Green LED when battery voltage > 6.5 V

Battery life:
120 Hrs with alkaline battery.

Mechanical characteristics

Operating temperature:
-10° to $+55^{\circ} \mathrm{C}$
Storage temperature:
-40° to $80^{\circ} \mathrm{C}$
Operating Relative Humidity:
$+10^{\circ}$ to $+35^{\circ} \mathrm{C}: 90 \pm 5 \% \mathrm{RH}$ (without condensation)
+40 to $+55^{\circ} \mathrm{C}: 70 \pm 5 \% \mathrm{RH}$ (without condensation)
Temperature influence:
$<300 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ or $0.3 \% / 10^{\circ} \mathrm{K}$
$<0.3 \mathrm{~A} /{ }^{\circ} \mathrm{K}$

Humidity influence:

10 to $90 \% \mathrm{RH}$ at reference temperature: < 0.1\%
Operating altitude:
0 to 2000 m
DC zero adjustment:
± 12 A (10 turns of switch on the casing)
Max. jaw insertion capacity:
1 cable: $30 \mathrm{~mm} \varnothing$ or 2 cables: $24 \mathrm{~mm} \varnothing$

Case Protection:

IP30 in accordance with IEC529

Drop test:

1 m on a 38 mm container of oak on concrete, test in accordance with IEC 1010

Mechanical shock:

100 g , in accordance with IEC 68-2-27
Vibration:
Test in accordance with IEC 68-2-6

- Frequency range:

5 to 15 Hz : amplitude: 1.5 mm
15 to 25 Hz : amplitude: 1 mm
25 to 55 Hz : amplitude: 0.25 mm

Self-extinguishing ability:

Casing and jaws: UL 94 V0

Dimensions:

$224 \times 97 \times 44 \mathrm{~mm}$
Weight:
440 g
Colour:
Dark grey casing with red jaws
Output:
Via 1.5 m double insulated cable with 4 mm male safety plug

- Safety Specification

Electrical:

Double or reinforced insulation between the primary, the secondary and the outer casing in accordance with IEC 1010-1-2 (indoor use).
600 V category III, pollution: 2
300 V category IV, pollution: 2
Electromagnetic Compatibility
(EC Stamp):
EN 50081-1: class B
EN 50082-2:

- Electrical Discharge IEC 1000-4-2
- Radial field IEC 1000-4-3
- Rapid transients IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8
(1) Reference conditions : 18° to $28^{\circ} \mathrm{C}, 20$ to $75 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no DC component, no current carrying conductor nearby, centred test sample, load $\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$, reset to zero before measurement (DC only), DC to 65 Hz , Battery: $9 \mathrm{~V} \pm 0,1 \mathrm{~V}$

To order	Reference
Clamp-on AC/DC current probe model PAC10 with battery and user's manual	P01.1200.70
Clamp-on AC/DC current probe model PAC10 with carrying case, battery and user's manual	P01.1200.70D

Clamp-on AC/DC current probe

Current	40 A AC 60 A DC	400 A AC 600 A DC
Ouput	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$

Model PAC11 is a high precision clamp-on current meter that operates using Hall effect technology for the measurement of $A C$ and DC currents. There is a mV output for direct measurement reading on a multimeter, and
 an automatic DC zeroing system.

Electrical Specification

Range	60 A	600 A
Current Range	$\begin{aligned} & \text { 0.2... } 40 \text { A (60 A peak) } \\ & 0.4 . . .60 \text { A DC } \end{aligned}$	$\begin{aligned} & \text { 0.5... } 400 \text { A (} 600 \text { A peak) } \\ & 0.5 . . .600 \text { A DC } \\ & \hline \end{aligned}$
Output signal	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$
\% accuracy of Output signal (1)	$\begin{aligned} & 0.5 \ldots 40 \mathrm{~A}: \\ & 1.5 \% \pm 5 \mathrm{mV} \\ & 40 \ldots 60 \mathrm{~A} \mathrm{DC:}: 1.5 \% \end{aligned}$	$\begin{aligned} & 0.5 \ldots 100 \mathrm{~A}: \\ & 1.5 \% \pm 1 \mathrm{mV} \\ & \text { 100... } 400 \mathrm{~A} \mathrm{DC:} 2 \% \\ & \text { 400... } 600 \mathrm{~A} \mathrm{DC:} 2.5 \% \end{aligned}$
Phase shift (45...65 Hz) (1)	$\begin{aligned} & 10 \ldots 20 \mathrm{~A}:<3^{\circ} \\ & 20 \ldots 40 \mathrm{~A}:<2^{\circ} \end{aligned}$	$\begin{aligned} & 10 \ldots 100 \mathrm{~A}:<2^{\circ} \\ & 100 \ldots 400 \mathrm{~A}:<1.5^{\circ} \end{aligned}$
Noise	DC... 1 kHz : $<8 \mathrm{mV}$ DC... $5 \mathrm{kHz}:<12 \mathrm{mV}$ $0.1 \mathrm{~Hz} . .5 \mathrm{kHz}$: $<2 \mathrm{mV}$	DC... $1 \mathrm{kHz}:<1 \mathrm{mV}$ DC... $5 \mathrm{kHz}:<1.5 \mathrm{mV}$ $0.1 \mathrm{~Hz} . .5 \mathrm{kHz}:<500 \mu \mathrm{~V}$
Rise/fall time	$\leq 100 \mu \mathrm{~s}$ to go from 10 to 90% Vout	$\leq 70 \mu \mathrm{~s}$ to go from 10 to 90% Vout

Overload:

2000 A DC and 1000 A AC up to 1 kHz

Bandwidth:

DC... 10 kHz at -3 dB

Load impedance:
$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$
Insertion impedance:
$0.39 \mathrm{~m} \Omega$ at $50 \mathrm{~Hz}, 58 \mathrm{~m} \Omega$ at 1000 Hz

Working voltage:

600 Vrms
Common mode voltage:
600 Vrms
Influence of adjacent conductor:
$<10 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor positioning
in the clamp's jaws:
0.5% of the reading

Battery:

9V Alkaline (NEDA 1604 A, IEC 6LR61)
Battery level indicator:
Green LED when the battery voltage $>6.5 \mathrm{~V}$
Battery life:
50Hrs with Alkaline battery
Overload indicator:
Red LED

Auto switch-off:

After 10 min's

Mechanical Specification

Operating temperature:
-10° to $+55^{\circ} \mathrm{C}$

Storage temperature:

-40° to $+80^{\circ} \mathrm{C}$
Operating relative humidity:
$+10^{\circ}$ to $+35^{\circ} \mathrm{C}: 90 \pm 5 \%$ RH (without condensation) $+40^{\circ}$ to $+55^{\circ} \mathrm{C}: 70 \pm 5 \% \mathrm{RH}$ (without condensation)
Temperature influence:
< $300 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ or $0.3 \% / 10^{\circ} \mathrm{K}$
$<0.3 \mathrm{~A} / \circ \mathrm{K}$
Humidity influence:
10 to 90% RH at reference temperature: < 0.1\%
Operating altitude:
0 to 2000 m
DC zero adjustment:
Automatically operated by button (± 10 A)
Max. jaw insertion capacity:
1 cable: $30 \mathrm{~mm} \varnothing$ or 2 cables : $24 \mathrm{~mm} \varnothing$ or $2 \times 31.5 \times 10 \mathrm{~mm}$ busbars

Case Protection:

IP30 in accordance with IEC529

Drop test:

1 m on a 38 mm container of oak on concrete, test in accordance with IEC 1010

Mechanical shock

100 g , in accordance with IEC 68-2-27
Vibration :
Test in accordance with IEC 68-2-6

- Frequency range:

5 to 15 Hz : amplitude: 1.5 mm
15 to 25 Hz : amplitude: 1 mm
25 to 55 Hz : amplitude: 0.25 mm
Self-extinguishing ability:
Casing and jaws: UL 94 V0
Dimensions:
$224 \times 97 \times 44 \mathrm{~mm}$
Weight:
440 g
Colour:
Dark grey casing with red jaws
Output:
Via 1.5 m double insulated cable with 4 mm male safety plug

Safety Specification

Electrical:
Double or reinforced insulation between the primary, the secondary and the outer casing in accordance with IEC 1010-1-2 (indoor use).
600 V category III, pollution: 2
300 V category IV, pollution: 2
Electromagnetic Compatibility
(EC stamp):
EN 50081-1: class B
EN 50082-2:

- Electrical discharge IEC 1000-4-2
- Radial field IEC 1000-4-3
- Rapid transients IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$ IEC $1000-4-8$
(1) Reference Conditions : 18° to $28^{\circ} \mathrm{C}, 20$ to $75 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no DC component, no current carrying conductor nearby, centred test sample, load $\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$, reset to zero before measurement (DC only) DC to 65 Hz , Battery $9 \mathrm{~V} \pm 0.1 \mathrm{~V}$

To order	Reference
Clamp-on AC/DC current probe model PAC11 with battery and user's manual	P01.1200.68
Clamp-on AC/DC current probe model PAC11with carrying case, battery and user's manual	P01.1200.68D

Clamp-on AC/DC current probe for oscilloscope use
Model PAC12

Current	40 A AC 60 A DC	400 A AC 600 A DC
	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{mA}$

Model PAC12 is a high precision clamp-on current probe that operates using Hall effect technology for the measurement of AC and DC currents. It has a mV BNC output so the reading can be directly displayed on an oscilloscope and comes with an automatic DC zeroing system.

- Electrical Specification

Range	60 A	600 A
Current range	$\begin{aligned} & 0.2 \ldots 40 \text { A (} 60 \text { A peak) } \\ & 0.4 \ldots . .60 \text { A DC } \end{aligned}$	$\begin{aligned} & \text { 0.5... } 400 \text { A (} 600 \text { A peak) } \\ & 0.5 \ldots 600 \text { A DC } \\ & \hline \end{aligned}$
Output signal	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$
\% Accuracy of output signal (1)	$\begin{aligned} & \text { 0.5... } 40 \mathrm{~A}: \\ & 1.5 \% \mathrm{R} \pm 5 \mathrm{mV} \\ & 40 . .60 \mathrm{~A} \mathrm{DC:} 1.5 \% \end{aligned}$	$\begin{aligned} & \text { 0.5... } 100 \mathrm{~A}: \\ & 1.5 \% \mathrm{R} \pm 1 \mathrm{mV} \\ & 100 \ldots 400 \text { A DC: } 2 \% \\ & 400 \ldots 600 \text { A DC: } 2.5 \% \end{aligned}$
Phase shift (45...65 Hz) (1)	$\begin{aligned} & 10 \ldots 20 \mathrm{~A}:<3^{\circ} \\ & 20 \ldots 40 \mathrm{~A}:<2^{\circ} \end{aligned}$	$\begin{aligned} & 10 \ldots . .100 \mathrm{~A}:<2^{\circ} \\ & 100 \ldots . .400 \mathrm{~A}:<1.5^{\circ} \end{aligned}$
Noise	DC... $1 \mathrm{kHz}:<8 \mathrm{mV}$ DC... $5 \mathrm{kHz}:<12 \mathrm{mV}$ $0.1 \mathrm{~Hz} \ldots . .5 \mathrm{kHz}:<2 \mathrm{mV}$	DC... $1 \mathrm{kHz}:<1 \mathrm{mV}$ DC... $5 \mathrm{kHz}:<1.5 \mathrm{mV}$ $0.1 \mathrm{~Hz} . . .5 \mathrm{kHz}$: $<500 \mu \mathrm{~V}$
Rise/fall time	$\leq 100 \mu$ s to go from 10 to 90% of Vout	$\leq 70 \mu \mathrm{~s}$ to go from 10 to 90% of Vout

Overload:

2000 A DC and 1000 A AC up to 1 kHz

Bandwidth:

DC up to 10 kHz at -3 dB

Load impedance:

$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$
Insertion impedance:
$0.39 \mathrm{~m} \Omega$ at $50 \mathrm{~Hz}, 58 \mathrm{~m} \Omega$ at 1000 Hz

Working voltage:

600 Vrms

Common mode voltage:

600 Vrms
Influence of adjacent conductor:
$<10 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor positioning in the clamp's jaws:
0.5% of the reading

Battery:

9V Alkaline (NEDA 1604 A, IEC 6LR61)

Battery level indicator:

Green LED battery voltage > 6.5 V
Battery life:
50 Hrs with alkaline battery

Overload indicator:

Red LED

Automatic shut-off:
10 min

Mechanical Specification

Operating temperature:
-10° to $55^{\circ} \mathrm{C}$

Storage temperature:

-40° to $80^{\circ} \mathrm{C}$
Operating relative humidity:
$+10^{\circ}$ to $+35^{\circ} \mathrm{C}$: $90 \pm 5 \% \mathrm{RH}$ (without condensation) $+40^{\circ}$ to $+55^{\circ} \mathrm{C}: 70 \pm 5 \% \mathrm{RH}$ (without condensation)
Temperature influence:
< $300 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ or $0.3 \% / 10^{\circ} \mathrm{K}$
< $0.3 \mathrm{~A} /{ }^{\circ} \mathrm{K}$
Humidity influence:
10 to 90% RH at reference temperature: < 0.1\%
Operating altitude:
0 to 2000 m

DC zero setting:

Automatic, push button operation ($\pm 10 \mathrm{~A}$)

Max. jaw insertion capacity:
1 cable: $30 \mathrm{~mm} \varnothing$ or 2 cables: $24 \mathrm{~mm} \varnothing$ or $2 \times 31.5 \times 10 \mathrm{~mm}$ busbars

Casing protection:

IP30 in accordance with IEC529

Drop test:

1 m onto a 38 mm container of oak and concrete, test in accordance with IEC 1010

Mechanical shock:

100 g , in accordance with IEC 68-2-27

Vibration:

Test in accordance with IEC 68-2-6

- Frequency range:

5 to 15 Hz : amplitude: 1.5 mm
15 to 25 Hz : amplitude: 1 mm
25 to 55 Hz : amplitude: 0.25 mm
Self-extinguishing ability:
Casing and clamp jaws: UL 94 V0

Dimensions:

$224 \times 97 \times 44 \mathrm{~mm}$
Weight:
440 g

Colour:

Dark grey with red clap jaws
Output:
Via 2 m coaxial cable with insulated BNC plug

Safety Specification

Electrical:
Double or reinforced insulation between primary, secondary and outer casing in accordance with 1010-1-2 (indoor use).
600 V category II, pollution: 2
300 V category IV, pollution: 2

Electromagnetic Compatibility

(EC Stamp):

EN 50081-1: class B
EN 50082-2.

- Electrical Discharge IEC 1000-4-2
- Radial Field IEC 1000-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8
(1) Reference Conditions: 18° to $28^{\circ} \mathrm{C}, 20$ to $75 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no DC component, no current carrying conductor nearby, centred test sample, load $\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$, reset to zero before measurement (DC only) DC to 65 Hz , Battery $9 \mathrm{~V} \pm 0.1 \mathrm{~V}$

To order	Reference
Clamp-on AC/DC current probe model PAC12 for oscilloscope use, with battery and user's manual	P01.1200.72

Model PAC20

Current	1000 A AC 1400 A DC
Ouput	$1 \mathrm{mV} / \mathrm{A}$

Model PAC20 is a high precision clamp-on current probe that operates using Hall effect technology for the measurement of $A C$ and DC currents.
It has a mV output so that direct readings may be made with a multimeter or logging equipment etc.

Electrical Specification

Current Range:
$0.5 . .1000$ A AC (1400 A peak)
0.5... 1400 A DC

Output signal:
$1 \mathrm{mV} / \mathrm{A}$
Accuracy (1):

Current range	$1 \ldots 100 \mathrm{~A}$	$100 \ldots 800 \mathrm{~A}$	$800 \ldots 1000 \mathrm{~A}$
\% accuracy of output signal	$1.5 \% \pm 1 \mathrm{mV}$	2.5%	4%
$1000 \ldots 1400 \mathrm{~A} \mathrm{DC} \mathrm{:} \mathrm{4} \mathrm{\%}$			

Phase shift (1):

Current range	$10 \ldots 200 \mathrm{~A}$	$200 \ldots 1000 \mathrm{~A}$
Phase shift from 45 to 65 Hz	$<2.5^{\circ}$	$<2^{\circ}$

Overload:

3000 A DC and 2000 A AC up to 1 kHz
Bandwidth:
DC... 5 kHz

Noise:

DC... $1 \mathrm{kHz}:<1 \mathrm{mV}$
DC... $5 \mathrm{kHz}:<1.5 \mathrm{mV}$
$0.1 \mathrm{~Hz} . . .5 \mathrm{kHz}$: $<500 \mu \mathrm{~V}$
Load impedance:
$>100 \mathrm{k} \Omega$ at 100 pF
Insertion impedance:
$0.39 \mathrm{~m} \Omega$ at $50 \mathrm{~Hz}, 58 \mathrm{~m} \Omega$ at 1000 Hz
Rise/fall time:

- Rise:
$<100 \mu \mathrm{~s}$ from 10 to 90% of the voltage value
- Fall:
$<100 \mu \mathrm{~s}$ from 10 to 90% of the voltage value
Working voltage:
600 Vrms
Common mode voltage:
600 Vrms
Influence of adjacent conductor:
$<10 \mathrm{~mA} / \mathrm{A}$ to 50 Hz
Influence of conductor positioning in clamp's jaws:
0.5% of the reading

Battery:

9V Alkaline (NEDA 1604 A, IEC 6LR61)
Battery level indicator:
Green LED when the battery voltage $>6.5 \mathrm{~V}$

Battery life:

120 Hrs with alkaline battery

- Mechanical Specification

Operating temperature:
-10° to $+55^{\circ} \mathrm{C}$

Storage temperature:

-40° to $+80^{\circ} \mathrm{C}$
Operating Relative Humidity:
$+10^{\circ}$ to $+35^{\circ} \mathrm{C}$: $90 \pm 5 \% \mathrm{RH}$ (without condensation)
+40 to $+55^{\circ} \mathrm{C}: 70 \pm 5 \% \mathrm{RH}$ (without condensation)
Temperature influence:
< $300 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ or $0.3 \% / 10^{\circ} \mathrm{K}$
$<0.3 \mathrm{~A} /{ }^{\circ} \mathrm{K}$
Humidity influence:
$10 . . .90 \%$ RH at reference temperature : < 0.1%
Operating altitude:
0 to 2000 m
Zero Adjustment:
$\pm 12 \mathrm{~A}$ (10 turn potentiometer)

Max. jaw insertion capacity:
1 cable: 42 mm Ø, 2 cables: 25.4 mm Ø or 2 busbars: $50 \times 5 \mathrm{~mm}$

Case Protection:

IP30 in accordance with IEC529
Drop Test:
1 m onto 38 mm container of oak on concrete, test in accordance with IEC 1010
Mechanical shock:
100 g , in accordance with IEC 68-2-27

Vibration:

Test in accordance with IEC 68-2-6

- Frequency range:

5 to 15 Hz : amplitude: 1.5 mm
15 to 25 Hz : amplitude: 1 mm
25 to 55 Hz : amplitude: 0.25 mm
Self-extinguishing ability:
Casing and clamp jaws : UL 94 V0

Dimensions:

$236,5 \times 97 \times 44 \mathrm{~mm}$

Weight:

520 g
Colour:
Dark grey with red jaws

Output:

Via 1.5 m double insulated cable with 4 mm male safety plug

Safety Specification

Electrical:

Double or reinforced insulation between primary, secondary and outer casing in accordance with IEC 1010-1-2 (indoor use). 600 V category III, pollution: 2
300 V category IV, pollution: 2
Electromagnetic Compatibility
(EC Stamp):
EN 50081-1: class B
EN 50082-2:

- Electrical discharge IEC 1000-4-2
- Radial Field IEC 1000-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$ IEC $1000-4-8$
(1) Reference Conditions: 18° to $28^{\circ} \mathrm{C}, 20$ to $75 \% \mathrm{HR}, 48$ to 65 Hz , external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no DC component, no current carrying conductor nearby, centred test sample, load $\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$, reset to zero before measurement (DC only) DC to 65 Hz , battery $9 \mathrm{~V} \pm 0.1 \mathrm{~V}$

To order	Reference
Clamp-on AC/DC current probe model PAC20 with battery and user's manual	P01.1200.71
Clamp on AC/DC current probe model PAC20 with carrying case, battery and user's manual	P01.1200.71D

Clamp-on AC/DC current probe \qquad
Model PAC21

Current	100 A AC 150 A DC	1000 A AC 1400 A DC
Ouput	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$

Model PAC21 is a high precision clamp-on current probe that operates using Hall effect technology for the measurement of $A C$ and $D C$ currents.
It has a mV output so that direct readings may be made with a multimeter, and comes with an automatic DC zeroing facility.

Electrical Specification

Range	150 A	1400 A
Current Range	$\begin{aligned} & \text { 0.2... } 100 \text { A AC (150 A peak) } \\ & 0.4 \ldots 150 \text { A DC } \end{aligned}$	$\begin{aligned} & \text { 0.5... } 1000 \text { A AC (} 1400 \text { A peak) } \\ & 0.5 \ldots 1400 \text { A DC } \end{aligned}$
Output signal	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$
\% Accuracy of output signal (1)	$\begin{aligned} & 0.5 \ldots 20 \mathrm{~A}: \\ & 1.5 \% \pm 5 \mathrm{mV} \\ & 20 \ldots 100 \mathrm{~A}: 1.5 \% \\ & 100 \ldots . .150 \mathrm{~A} \mathrm{DC:} \\ & 2.5 \% \end{aligned}$	$\begin{aligned} & \text { 0.5... } 100 \mathrm{~A}: \\ & 1.5 \% \pm 1 \mathrm{mV} \\ & 100 \ldots 800 \mathrm{~A}: 2.5 \% \\ & 800 \ldots 1000 \mathrm{~A}: 4 \% \\ & 1000 \ldots 1400 \mathrm{~A} \text { DC: } 4 \% \end{aligned}$
Phase shift (45...65 Hz) (1)	$\begin{aligned} & 10 \ldots 20 \mathrm{~A}:<3^{\circ} \\ & 20 \ldots 100 \mathrm{~A}:<2^{\circ} \end{aligned}$	$\begin{aligned} & 10 \ldots 200 \mathrm{~A}:<2^{\circ} \\ & 200 . . .1000 \mathrm{~A}:<1.5^{\circ} \end{aligned}$
Noise	DC... $1 \mathrm{kHz}:<8 \mathrm{mV}$ DC... $5 \mathrm{kHz}:<12 \mathrm{mV}$ $0.1 \mathrm{~Hz} \ldots .5 \mathrm{kHz}:<2 \mathrm{mV}$	DC... $1 \mathrm{kHz}:<1 \mathrm{mV}$ DC... $5 \mathrm{kHz}:<1.5 \mathrm{mV}$ $0.1 \mathrm{~Hz} \ldots . .5 \mathrm{kHz}:<500 \mu \mathrm{~V}$
Rise/fall time	$\leq 100 \mu \mathrm{~s}$ from 10 to 90% of Vout	$\leq 70 \mu$ s from 10 to 90% of Vout

Overload:

3000 A DC and 2000 A AC up to 1 kHz

Bandwidth:

DC... 10 kHz at -3 dB

Load impedance:
$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$
Insertion impedance:
$0.39 \mathrm{~m} \Omega$ at $50 \mathrm{~Hz}, 58 \mathrm{~m} \Omega$ at 1000 Hz
Working voltage:
600 Vrms
Common mode voltage:
600 Vrms
Influence of adjacent conductor:
$<10 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor positioning
in the clamp's jaws:
0.5% of the reading

Battery:

9 Alkaline (NEDA 1604 A, IEC 6LR61)
Battery level indicator:
Green LED when the battery voltage $>6.5 \mathrm{~V}$

Battery life:

50 Hrs with alkaline battery
Overload indicator:
Red LED

Auto switch-off:
10 min

Mechanical Specification

Operating temperature:
-10° to $+55^{\circ} \mathrm{C}$
Storage temperature:
-40° to $+80^{\circ} \mathrm{C}$
Operating relative humidity:
$+10^{\circ}$ to $+35^{\circ} \mathrm{C}: 90 \pm 5 \% \mathrm{RH}$ (without condensation)
$+40^{\circ}$ to $+55^{\circ} \mathrm{C}: 70 \pm 5 \% \mathrm{RH}$
(without condensation)
Temperature Influence:
$<300 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ or $0.3 \% / 10^{\circ} \mathrm{K}$
$<0.3 \mathrm{~A} /{ }^{\circ} \mathrm{K}$
Humidity influence:
10 to $90 \% \mathrm{RH}$ for a reference temperature: < 0.1\%
Operating altitude:
0 to 2000 m
Zero adjustment:
$\pm 10 \mathrm{~A}$ adjustment via push button
Max. jaw Insertion capacity
1 cable: $42 \mathrm{~mm} \varnothing$, 2 cables: $25.4 \mathrm{~mm} \varnothing$ or
2 busbars: $50 \times 5 \mathrm{~mm}$

Casing protection:

IP30 in accordance with IEC529

Drop test:

1 m onto a 38 mm container of oak on concrete, test in accordance with IEC 1010 Mechanical shock:
100 g , in accordance with IEC 68-2-27
Vibration:
test in accordance with IEC 68-2-6

Frequency range:

5 to 15 Hz : amplitude: 1.5 mm
15 to 25 Hz : amplitude: 1 mm
25 to 55 Hz : amplitude: 0.25 mm
Self-extinguishing ability:
Casing and jaws: UL 94 Vo

Dimensions:

$236,5 \times 97 \times 44 \mathrm{~mm}$

Weight:

520 g

Colour:

Dark grey with red clamp jaws

Output:

Via 1.5 m double insulated cable with 4 mm male safety plug

Safety Specification

Electrical:
Double or reinforced insulation between the primary, secondary and outer casing in accordance with IEC 1010-1-2 (indoor use).
600 V category III, pollution: 2
300 V category IV, pollution: 2

Electromagnetic Compatibility

(EC Stamp):
EN 50081-1: class B
EN 50082-2:

- Electrical discharge IEC 1000-4-2
- Radial Field IEC 1000-4-3
- Rapid transients IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8
(1) Reference Conditions: 18° to $28^{\circ} \mathrm{C}, 20$ to $75 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field < $40 \mathrm{~A} / \mathrm{m}$, no DC component, no current carrying conductor nearby, centred test sample, load $\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$, zero adjustment before measurement (DC only) DC to 65 Hz , battery: $9 \mathrm{~V} \pm 0.1 \mathrm{~V}$

To order	Reference
Clamp-on AC/DC current probe model PAC21 with battery and user's manual	P01.1200.69
Clamp-on AC/DC current probe model PAC21 with carrying case, battery and user's manual	P01.1200.69D

Clamp-on AC/DC current probe for oscilloscope use

Model PAC22 (Insulated current probe)

Current	100 A AC 150 A DC	1000 A AC 1400 A DC
Ouput	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$

Model PAC22 is a high precision clamp-on current probe that operates using Hall effect technology for the measurement of AC and DC currents.
It has a mV output via a BNC connector for use with oscilloscopes, and comes with an automatic DC zeroing facility.

Electrical Specification

Range	150 A	1400 A
Current range	$\begin{aligned} & 0.2 \ldots 100 \text { A AC (150 A peak) } \\ & 0.4 \ldots 150 \text { A DC } \end{aligned}$	$\begin{aligned} & \text { 0.5... } 1000 \text { A AC (1400 A peak) } \\ & 0.5 \ldots 1400 \text { A DC } \end{aligned}$
Output signal	$10 \mathrm{mV} / \mathrm{A}$	$1 \mathrm{mV} / \mathrm{A}$
\% Accuracy of output signal (1)	$\begin{aligned} & 0.5 \ldots 20 \mathrm{~A}: \\ & 1.5 \% \pm 5 \mathrm{mV} \\ & 20 \ldots 100 \mathrm{~A}: 1.5 \% \\ & 100 \ldots . .150 \mathrm{~A} \mathrm{DC:} \\ & 2.5 \% \end{aligned}$	$\begin{aligned} & 0.5 \ldots 100 \mathrm{~A}: \\ & 1.5 \% \pm 1 \mathrm{mV} \\ & 100 \ldots 800 \mathrm{~A}: 2.5 \% \\ & 800 \ldots 1000 \mathrm{~A}: 4 \% \\ & 1000 \ldots .1400 \mathrm{~A} \mathrm{DC:} 4 \% \end{aligned}$
Phase Shift 45... 65 Hz) (1)	$\begin{aligned} & 10 \ldots . .20 \mathrm{~A}:<3^{\circ} \\ & 20 . . .100 \mathrm{~A}:<2^{\circ} \end{aligned}$	$\begin{aligned} & 10 \ldots . .200 \mathrm{~A}:<2^{\circ} \\ & 200 \ldots 1000 \mathrm{~A}:<1.5^{\circ} \end{aligned}$
Noise	DC... $1 \mathrm{kHz}:<8 \mathrm{mV}$ DC... $5 \mathrm{kHz}:<12 \mathrm{mV}$ $0.1 \mathrm{~Hz} . .5 \mathrm{kHz}$: $<2 \mathrm{mV}$	DC... $1 \mathrm{kHz}:<1 \mathrm{mV}$ DC... $5 \mathrm{kHz}:<1.5 \mathrm{mV}$ $0.1 \mathrm{~Hz} . . .5 \mathrm{kHz}$: $500 \mu \mathrm{~V}$
Rise/fall time	$\leq 100 \mu \mathrm{~s}$ go to from 10 to 90% of Vout	$\leq 70 \mu$ s to go from 10 to 90% of Vout

Overload:

3000 A DC and 2000 A AC up to 1 kHz

Bandwidth:

DC... 10 kHz at -3 dB

Load impedance:
$\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$

Insertion impedance:

$0.39 \mathrm{~m} \Omega$ at $50 \mathrm{~Hz}, 58 \mathrm{~m} \Omega$ at 1000 Hz
Working voltage:
600 Vrms
Common mode voltage:
600 Vrms
Influence of adjacent conductor:
$<10 \mathrm{~mA} / \mathrm{A}$ at 50 Hz
Influence of conductor positioning
in the clamp's jaws:
0.5% of reading

Battery:

9 Alkaline (NEDA 1604 A, IEC 6LR61)
Battery level indicator:
Green LED when battery voltage > 6.5 V
Battery life:
50 Hrs with Alkaline battery .
Overload indicator:
Red LED

Auto shut-off:
After 10 min

Mechanical Specification

Operating temperature:
-10° to $+55^{\circ} \mathrm{C}$

Storage temperature:

-40° à $+80^{\circ} \mathrm{C}$

Operating Relative Humidity:

$+10^{\circ}$ to $+35^{\circ} \mathrm{C}: 90 \pm 5 \% \mathrm{RH}$ (without condensation)
$+40^{\circ}$ to $+55^{\circ} \mathrm{C}: 70 \pm 5 \% \mathrm{RH}$ (without condensation)
Temperature Influence:
$<300 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ or $0.3 \% / 10^{\circ} \mathrm{K}$
$<0.3 \mathrm{~A} /{ }^{\circ} \mathrm{K}$
Humidity Influence:
10 to 90% RH for temperature reference: < 0.1\%
Operating temperature:
0 to 2000 m
Zero adjustment:
$\pm 10 \mathrm{~A}$ adjustment via push button
Max. Jaw insertion capacity:
1 cable: $42 \mathrm{~mm} \varnothing$, 2 cables: $25.4 \mathrm{~mm} \varnothing$, or 2 busbars: $50 \times 5 \mathrm{~mm}$

Casing protection:

IP30 in accordance with IEC529

Drop test:

1 m onto a 38 mm container of oak on concrete, test according to IEC 1010

Mechanical shock:

100 g , in accordance with IEC 68-2-27

Vibration:

test in accordance with IEC 68-2-6
Frequency range:
5 to 15 Hz : amplitude: 1.5 mm
15 to 25 Hz : amplitude: 1 mm
25 to 55 Hz : amplitude: 0.25 mm
Self-extinguishing ability:
Casing and clamp jaws: UL 94 Vo
Dimensions:
$236,5 \times 97 \times 44 \mathrm{~mm}$

Weight:

520 g
Colour:
Dark grey with red clamp jaws
Output:
Via 2 m coaxial cable with insulated BNC connector

Safety Specification

Electrical:
Double or reinforced insulation between the primary, secondary and the outer casing in accordance with IEC 1010-1-2 (indoor use).
600 V category III, pollution: 2
300 V category IV, pollution: 2

Electromagnetic Compatibility

(EC Stamp):

EN 50081-1: class B
EN 50082-2:

- Electrical Discharge IEC 1000-4-2
- Radial field IEC 1000-4-3
- Rapid Transients IEC 1000-4-4
- Magnetic field to $50 / 60 \mathrm{~Hz}$ IEC 1000-4-8

[^11] $\geq 1 \mathrm{M} \Omega$ and $\leq 100 \mathrm{pF}$, zero adjustment before measurement (DC only) DC to 65 Hz , Battery $9 \mathrm{~V} \pm 0.1 \mathrm{~V}$

To order	Reference
Clamp-on AC/DC current probe model PAC22 for oscilloscope use, with battery and user's manual	P01.1200.73

Clamp Accessories

Having made test, control and measurement instruments for over a century now, Chauvin Arnoux products are the result of years of experience in the field. A knowledge of measurement techniques and daily experience in safety practices has brought about an entire range of practical and safety conscious test accessories. Throughout the range, from the artificial neutral to the BNC/ female safety socket, moving on to silicon lead banana plugs (straight or elbowed),
the IEC 1010 standard (assigned voltage 1000 V, category III installation) is the benchmark by which all products are judged.

However, even a device that complies with this norm does not guarantee complete safety, ensure that you are equipped with suitable accessories with which you can verify that your equipment meets the most demanding in safety standards.

Straight/elbowed lead $\varnothing 4 \mathrm{~mm}$
2 lengths available: 1.5 or 3 m 6 colours available: red, black, green, blue, yellow and white IEC 1010-2-031, 1000 V, Cat III

Male BNC lead / male security plugs $\varnothing 4 \mathrm{~mm}$
Impedance : 50Ω
Length : 1 or 2 m
IEC 1010-2-031, 500 V , Cat I

Straight/straight lead Ø 4 mm
2 lengths available: 1.5 or 3 m 6 colours available: red, black, green,
blue, yellow and white
IEC 1010-2-031, 1000 V, Cat III

BNC extension piece (1) - BNCT (2)

1) female BNC / BNC female
2) male $B N C$ / $B N C$ female - BNC female IEC 1010-2-031, 500 V , Cat I

Test probe lead/ elbowed Ø $\mathbf{4} \mathbf{~ m m}$
Length: 1.2 m
Colours: red and black
IEC 1010-2-031, 1000 V, Cat III

BNC adapter Ø 4 mm

1) male BNC / female sockets
2) male BNC / male plugs IEC 1010-2-031, 500 V , Cat I

To Order	Reference
Straight/elbowed silicon lead $\varnothing 4 \mathrm{~mm}($ red / black 1.5 m$)$	P 01.2950 .88
Straight/straight silicon lead $\varnothing 4 \mathrm{~mm}($ red / black 1.5 m$)$	P 01.2950 .91
Silicon test probe lead/elbowed $\varnothing 4 \mathrm{~mm}($ red/black 1.2 m$)$	P 01.2950 .84
Male BNC lead / Male security plugs $\varnothing 4 \mathrm{~mm}(2 \mathrm{~m})$	P 01.2950 .66 A
Set of 3 extension pieces female BNC / female BNC	P 01.1019 .00 A
Set of 3 branch terminals male BNC / female BNC - female BNC	P 01.1018 .99 A
Set of 2 adapters male BNC / female sockets	P 01.1018 .46
Set of 2 adapters male / male plugs	P 01.1018 .47

Current clamp accessories (continued)

Differential probe DP25
IEC 1010-1, 600 V, Cat III-2 Display, with an oscilloscope, high differential voltages up to 1300 Vp pp Attenuation: $1 / 20,1 / 50$ or $1 / 200$ Bandwidth: 25 Mhz

Comes with adjustable strap (70 ... 120 mm) to facilitate transport by hand or shoulder. Inside dimensions:

- Width: 60 mm
- Length: 220 mm
- Depth when closed: 240 mm

Lead housing: 60 mm

Complete range of multimeters (consult us)

Complete range of oscilloscopes (consult us)

Artificial Neutral Model AN1

This instrument is designed to be used with the current leakage detecting clamps C37C, C173, B2 and allows the measurement of fault current on 3 phase circuits without a neutral conductor.
A switch makes it possible to select the test rate and allows the use of clamps C37, C173 and B2 with a digital or analogue multimeter.
An internal buzzer signals the connection of the artificial neutral to ground. Three LED's indicate the voltage power on each of the 3 phases during measurement.

Electrical Specifications

Operating voltage:

30 to 600 V

Frequency range:

45 to 65 Hz

Phase resistance:

$3.9 \mathrm{k} \Omega \pm 5 \%$

Work/rest period:

Slow position: 0.5 s
Fast position: 2.3 s
Supply:
12 V DC, $8 \times 1.5 \mathrm{~V}$ " AA " batteries
Consumption:
180 mA

Battery Life:

40 hours

Mechanical specification

Reference temperature:
$23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$
Operating temperature:
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, between 10 and $90 \% \mathrm{RH}$
Storage temperature:
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, between 10 and $90 \% \mathrm{RH}$
Self-extinguishing ability:
UL94 V0
Colour:
Yellow

Dimensions:

$220 \times 136 \times 150 \mathrm{~mm}$

Weight:

1.3 Kg

Safety Specifications

Dielectric test:
6 kV between the lead and the unit
Working voltage:
600 Vrms

To Order	Reference
Artificial Neutral model AN1 with shoulder bag, batteries, set of leads, croc-clips and user's manual	P01.1972.01
Accessories: Spare shoulder bag $\mathrm{n}^{\circ} \mathbf{2}$	P 01.2980 .05

F1N / F2N / F3N Series
The F1N, F2N and F3N digital current clamps go to make up a range of highly effective clamp-on tools that enable the user to measure all kinds of AC currents, distorted or otherwise.
The 400 A RMS clamps have a 2.5 peak factor, making it possible to carry out measurements on highly distorted signals.
These clamps offer high performance whilst remaining both easy and safe to use. They come equipped with an alphanumeric display and bar graph with advanced features like the hold function for freezing displayed values. Other features include the memorisation of
min, max and average current intensity and frequency values, the peak current intensity value over 2 ms and the smoothed current intensity and frequency value over 3 s . Measurement is carried out by simply gripping the conductor in question and the clamp gives the true RMS measurement value.
These clamps come into their own during the diagnosis of distorted current intensities and frequencies that are found in the field of power electronics; on devices such as inverters, variable speed drives, solid-state power blocks, switched power supplies, regulators etc.

Electrical specifications

Bandwidth:

$0.5 \mathrm{~Hz} . . .10 \mathrm{kHz}$

Measuring range :

2 automatic or manual ranges:
0.5... 1000 A AC

Accuracy in AC current measurement ${ }^{(1)}$

- 40 A range

Measurement range	$0.05 \ldots 0.3 \mathrm{~A}$	$0.3 \ldots 40 \mathrm{~A}$	$40 \ldots 100 \mathrm{~A}^{(2)}$
Resolution	10 mA	10 mA	10 mA
\% accuracy of reading	Not specified	$\leq 2 \% \pm 20 \mathrm{cts}$	$\leq 2 \% \pm 20 \mathrm{cts}$

- 400 A range

Measurement range	$0.1 \ldots 100 \mathrm{~A}$	$100 \ldots 400 \mathrm{~A}$	$400 \ldots 700 \mathrm{~A}^{(2)}$	$700 \ldots 1000 \mathrm{~A}^{(2)}$
Resolution	0.1 A	0.1 A	0.1 A	0.1 A
\% accuracy of reading	Not specified	$\leq 2 \% \pm 2 \mathrm{cts}$	$\leq 5 \% \pm 2 \mathrm{cts}$	Not specified

Accuracy in frequency measurement ${ }^{(1)}$

- 1 kHz range

Measurement range	$0.5 \ldots 5 \mathrm{~Hz}$	$5 \ldots 999.9 \mathrm{~Hz}$
Resolution	0.1 Hz	0.1 Hz
\% accuracy of reading	$\leq 0.1 \% \pm 1 \mathrm{ct}$	$\leq 0.2 \% \pm 2 \mathrm{cts}$

- 10 kHz range

Measurement range	$1000 \ldots 1500 \mathrm{~Hz}$	$1500 \ldots . .2100 \mathrm{~Hz}$	$2100 \ldots 9999 \mathrm{~Hz}$
Resolution	1 Hz	1 Hz	1 Hz
\% accuracy of reading	$\leq 0.2 \% \pm 2 \mathrm{cts}$	$\leq 0.5 \% \pm 5 \mathrm{cts}$	$\leq 0.2 \% \pm 1 \mathrm{ct}$

Power supply:

9 Valkaline battery (NEDA 1604A, IEC 6LR61)

Battery charge life:

≥ 80 hrs in continuous operation
Automatic battery level test
Automatic shutdown of the clamp after 10 minutes without use. This function can be deactivated when the instrument is started up.

Functions

RANGE function:
In A, this function can be used to set a measuring range (40 A or 400 A).
In this case, the clamp enables the range to be extended for current measurement up to $100 \mathrm{~A}(40 \mathrm{~A} \mathrm{range})$ or 1000 A (400 A range).

In Hz, this function can be used to change the trigger threshold for frequency measurement.

HOLD function:

Holds the measurement.

Mechanical specifications

Dimensions:

$232 \times 98 \times 44 \mathrm{~mm}$

Weight:

500 g
Display:
10,000-count LCD display and 40 -segment bargraph
Digit size: 11 mm

Temperature:

Operation: -10° to $+55^{\circ} \mathrm{C}$
Storage: -40° to $+70^{\circ} \mathrm{C}$

Relative humidity:

Operation: 0 to $90 \% \mathrm{RH}$ up to $40^{\circ} \mathrm{C}$ (75% RH at $55^{\circ} \mathrm{C}$)
Storage: 0 to 95% RH (70% RH at $70^{\circ} \mathrm{C}$)

Casing protection:

IP 30 (IEC 529)
Self-extinguishing ability:
Housing: UL94 V2
Jaws: UL94 V0
Display screen: UL94 V1
Drop test: 1 m (IEC 68-2-32)
Protection against impacts:
100 g (IEC 68-2-27)
Resistance to vibrations:
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ (IEC 68-2-6)

Clamping capacity:

Cables: $1 \times \varnothing 42 \mathrm{~mm} / 2 \times \varnothing 25 \mathrm{~mm}$
Bars: 2 bars of $50 \times 5 \mathrm{~mm}$

Colours:

Dark grey casing with red jaws

Safety specifications

Compliance with standards:
UL, GS, CSA

Electrical:

Instrument with dual insulation as per IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic Compatibility
(E.M.C.):

EN 50081-1: Class B
EN 50082-2:
Electrostatic discharge: IEC 801-2
Rapid transients: IEC 801-4
Electric shocks: IEC 801-5
(1) Reference Conditions: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 45$ to $75 \% \mathrm{RH}$, battery voltage: $9 \mathrm{~V} \pm 0.1 \mathrm{~V}$, centred measured conductor, direct external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no alternating external magnetic current, no DC components; no external components containing a current, sinusoidal signal from 45 to 65 Hz
(2) Extension of resolution (RANGE function)

To order	Reference
F1N current clamp with carrying case, battery and user's manual	P01.1207.01A

Electrical specifications

Bandwidth:

$0.5 \mathrm{~Hz} . . .10 \mathrm{kHz}$

Measuring range :

2 automatic or manual calibres:
0.5... 1000 A AC

Accuracy in AC current measurement ${ }^{(1)}$
Standard operating mode ${ }^{(1)(3)}$:

- 40 A range

Measurement range	$0.05 \ldots 0.3 \mathrm{~A}$	$0.3 . .40 \mathrm{~A}$	$40 \ldots 100 \mathrm{~A}^{(2)}$
Resolution	10 mA	10 mA	10 mA
\% accuracy of reading	Not specified	$\leq 2 \% \pm 20 \mathrm{cts}$	$\leq 2 \% \pm 20 \mathrm{cts}$

- 400 A range

Measurement range	$0.1 \ldots 100 \mathrm{~A}$	$100 \ldots 400 \mathrm{~A}$	$400 \ldots 700 \mathrm{~A}^{(2)}$	$700 \ldots 1000 \mathrm{~A}^{(2)}$
Resolution	0.1 A	0.1 A	0.1 A	0.1 A
\% accuracy of reading	Not specified	$\leq 2 \% \pm 2 \mathrm{cts}$	$\leq 5 \% \pm 2 \mathrm{cts}$	Not specified

Accuracy in frequency measurement ${ }^{(1)}$

- 1 kHz range

Measurement range	$0.5 \ldots .5 \mathrm{~Hz}$	$5 \ldots 999.9 \mathrm{~Hz}$
Resolution	0.1 Hz	0.1 Hz
\% accuracy of reading	$\leq 0.1 \% \pm 1 \mathrm{ct}$	$\leq 0.2 \% \pm 2 \mathrm{cts}$

- 10 kHz range

Measurement range	$1000 \ldots 1500 \mathrm{~Hz}$	$1500 \ldots . .2100 \mathrm{~Hz}$	$2100 \ldots 9999 \mathrm{~Hz}$
Resolution	1 Hz	1 Hz	1 Hz
\% accuracy of reading	$\leq 0.2 \% \pm 2 \mathrm{cts}$	$\leq 0.5 \% \pm 5 \mathrm{cts}$	$\leq 0.2 \% \pm 1 \mathrm{ct}$

Power supply:

9V alkaline battery (NEDA 1604A, IEC 6LR61)

Battery charge life:

≥ 80 hrs in continuous operation
Automatic battery level test
Automatic shutdown of the clamp after 10 minutes without use. This function can be deactivated when the instrument is started up.

Functions

RANGE function:
In A, this function can be used to set a measurement range (40 A or 400 A). In this case, the clamp enables the range to be extended for current measurement up to 100 A (40 A range) or 1000 A (400 A range).

In Hz , this function can be used to change the trigger threshold for frequency measurement.

SMOOTH function:

For unstable currents, this function provides average measurements over 3 s .
PEAK function:
This function provides the peak value of the current.

HOLD function:

Holds the measurement.

Mechanical specifications

Dimensions : $232 \times 98 \times 44 \mathrm{~mm}$ Weight: 500 g

Display:

10,000-count LCD display and 40 -segment bar graph
Digit size: 11 mm

Temperature:

Operation: -10° to $+55^{\circ} \mathrm{C}$
Storage: -40° to $+70^{\circ} \mathrm{C}$

Relative humidity:

Operation: 0 to $90 \% \mathrm{RH}$ up to $40^{\circ} \mathrm{C}$ ($75 \% \mathrm{RH}$ at $55^{\circ} \mathrm{C}$)
Storage: 0 to $95 \% \mathrm{RH}\left(70 \% \mathrm{RH}\right.$ at $70^{\circ} \mathrm{C}$)

Casing protection:

IP 30 (IEC 529)

Self-extinguishing ability:

Housing: UL94 V2
Jaws: UL94 V0
Display screen: UL94 V1
Drop test:
1 m (IEC 68-2-32)
Protection against impacts:
100 g (IEC 68-2-27)
Resistance to vibrations:
$10 / 55 / 10 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ (IEC 68-2-6)

Clamping capacity:

Cables: $1 \times \varnothing 42 \mathrm{~mm} / 2 \times \varnothing 25 \mathrm{~mm}$ Bars: 2 bars of $50 \times 5 \mathrm{~mm}$

Colours:

Dark grey housing with red jaws

Safety specifications

Compliance with standards:

UL, GS, CSA

Electrical:

Instrument with dual insulation as per IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic Compatibility
(E.M.C.) :

EN 50081-1: Class B
EN 50082-2:
Electrostatic discharge: IEC 801-2
Rapid transients: IEC 801-4
Electric shocks: IEC 801-5
(1) Reference Conditions: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 45$ to $75 \% \mathrm{RH}$, battery voltage: $9 \mathrm{~V} \pm 0.1 \mathrm{~V}$, measured conductor centred, direct external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no alternating external magnetic current, no DC components; no external components containing a current, sinusoidal signal from 45 to 65 Hz
(2) Extension of resolution (RANGE function)
(3) In certain cases, use of the processing functions (PEAK) may slightly modify the accuracy.

To order	Reference
F2N current clamp with carrying case, battery and user's manual	P01.1207.02A

Electrical specifications

Bandwidth:

$0.5 \mathrm{~Hz} . .10 \mathrm{kHz}$

Measuring range :

2 automatic or manual ranges:
0.5... 1000 A AC

Accuracy in AC current measurement ${ }^{(1)}$
standard operating mode ${ }^{(1)(3)}$:

- 40 A range

Measurement range	$0.05 \ldots 0.3 \mathrm{~A}$	$0.3 \ldots 40 \mathrm{~A}$	$40 \ldots 100 \mathrm{~A}^{(2)}$
Resolution	10 mA	10 mA	10 mA
$\%$ accuracy of reading	Not specified	$\leq 2 \% \pm 20 \mathrm{cts}$	$\leq 2 \% \pm 20 \mathrm{cts}$

- 400 A range

Measurement range	$0.1 \ldots 100 \mathrm{~A}$	$100 \ldots 400 \mathrm{~A}$	$400 \ldots 700 \mathrm{~A}^{(2)}$	$700 \ldots 1000 \mathrm{~A}^{(2)}$
Resolution	0.1 A	0.1 A	0.1 A	0.1 A
\% accuracy of reading	Not specified	$\leq 2 \% \pm 2 \mathrm{cts}$	$\leq 5 \% \pm 2 \mathrm{cts}$	Not specified

Accuracy in frequency measurement ${ }^{(1)}$

- 1 kHz range

Measurement range	$0.5 \ldots 5 \mathrm{~Hz}$	$5 \ldots 999.9 \mathrm{~Hz}$
Resolution	0.1 Hz	0.1 Hz
\% accuracy of reading	$\leq 0.1 \% \pm 1 \mathrm{ct}$	$\leq 0.2 \% \pm 2 \mathrm{cts}$

- 10 kHz range

Measurement range	$1000 \ldots 1500 \mathrm{~Hz}$	$1500 \ldots 2100 \mathrm{~Hz}$	$2100 \ldots 9999 \mathrm{~Hz}$
Resolution	1 Hz	1 Hz	1 Hz
\% accuracy of reading	$\leq 0.2 \% \pm 2 \mathrm{cts}$	$\leq 0.5 \% \pm 5 \mathrm{cts}$	$\leq 0.2 \% \pm 1 \mathrm{ct}$

Power supply:

9 V alkaline battery (NEDA 1604A, IEC 6LR61)
Battery charge life:
≥ 80 hrs in continuous operation
Automatic battery level test
Automatic shutdown of the clamp after $10 \mathrm{mi}-$ nutes without use. This function can be deactivated when the instrument is started up.

Functions

RANGE function:

In A, this function can be used to set a measuring range (40 A or 400 A).
In this case, the clamp enables the range to be extended for current measurement up to 100 A (40 A range) or $1000 \mathrm{~A}(400 \mathrm{~A}$ range).
In Hz , this function can be used to change the trigger threshold for frequency meas urement.

SMOOTH function:

For unstable currents, this function provides average measurements over 3 s .

PEAK function:

This function provides the peak value of the current.

MIN / MAX function:

This function triggers an acquisition mode enabling:

- calculation of the average TRMS value (AVG) since activation of the function - capture of extreme values (MIN, MAX) with a response time $\leq 100 \mathrm{~ms}$
- capture of the absolute peak value with a response time $\leq 2 \mathrm{~ms}$, associated with the PEAK function

HOLD function:

Holds the measurement.

Mechanical specifications
Dimensions: $232 \times 98 \times 44 \mathrm{~mm}$
Weight: 500 g
Display:
10,000-count LCD display and 40-segment bargraph
Digit size: 11 mm
Temperature:
Operation: -10° to $+55^{\circ} \mathrm{C}$
Storage: -40° to $+70^{\circ} \mathrm{C}$
Relative humidity:
Operation: 0 to $90 \% \mathrm{RH}$ up to $40^{\circ} \mathrm{C}$ (75% RH at $55^{\circ} \mathrm{C}$)
Storage: 0 to 95% RH $\left(70 \%\right.$ RH at $\left.70^{\circ} \mathrm{C}\right)$

Casing protection:

IP 30 (IEC 529)

Self-extinguishing ability:

Housing: UL94 V2
Jaws: UL94 V0
Display screen: UL94 V1
Drop test: 1 m (IEC 68-2-32)
Protection against impacts:
100 g (IEC 68-2-27)

Resistance to vibrations:

10/55/10 Hz, 0.15 mm (IEC 68-2-6)

Clamping capacity:

Cables: $1 \times \varnothing 42 \mathrm{~mm} / 2 \times \varnothing 25 \mathrm{~mm}$ Bars: 2 bars of $50 \times 5 \mathrm{~mm}$

Colours:

Dark grey housing with red jaws

Safety specifications

Compliance with standards:
UL, GS, CSA

Electrical:

Instrument with dual insulation as per IEC 1010-1 \& IEC 1010-2-032

- 600 V category III, pollution level 2
- 300 V category IV, pollution level 2

Electromagnetic Compatibility
(E.M.C.):

EN 50081-1: Class B
EN 50082-2:
Electrostatic discharge: IEC 801-2
Rapid transients: IEC 801-4
Electric shocks: IEC 801-5
(1) Reference Conditions: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}$, 45 to $75 \% \mathrm{RH}$, battery voltage: $9 \mathrm{~V} \pm 0.1 \mathrm{~V}$, measured conductor centred, direct external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no alternating external magnetic current, no DC components; no external components containing a current, sinusoidal signal from 45 to 65 Hz
(2) Extension of resolution (RANGE function)
(3) In certain cases, use of the processing functions (PEAK, RECORD, etc.) may slightly modify the accuracy.

To order	Reference
F3N current clamp with carrying case, battery and user's manual	P01.1207.03A

F11N / F13N / F15 Series

This range of clamp-on digital multimeters combines all the advantages of the clamp-on ammeter with the additional scope of a digital multimeter.
These clamps are lightweight, compact and rugged in design for 'all terrain' use. All the functions are conveniently operated leaving one hand free thanks to an automatic range selector.
These models have some useful safety features, for example there is the anti-slip guard and the antipierce cable system, you don't even have to change a fuse.

All models meet the standard IEC 1010-1 600 V Cat. III, guaranteeing the highest measurement quality whatever the application in question.
The RMS model F11N gives RMS values on sinusoidal signal carrying networks (Linear loads).
The RMS model F13N gives RMS values on distorted and sinusoidal waveforms (non-linear loads).
The RMS model F15 measures DC intensity with an automatic DC zeroing facility.
 ARNOUX

Model F11N

Electrical Specification

Bandwidth

$45 . . .450 \mathrm{~Hz}$

AC Current

■ Measurement range:
2 automatic ranges: 0.5... 700 A AC

- Resolution:
0.5...399.9 A: 0.1 A
400... 700 A: 1 A
- Accuracy (1):
0.5 .. 399.9 A: $\leq 2.5 \% \mathrm{R} \pm 5$ cts
400... $700 \mathrm{~A}: \leq 2.5 \% \mathrm{R} \pm 5 \mathrm{cts}$ from 0 to 90% of the range
- Frequency influence
< 2\% R from 45 Hz to 450 Hz

AC Voltage

■ Measurement range:
2 automatic ranges: $0.1 \ldots 600 \mathrm{~V} \mathrm{AC}$
■ Resolution:
0.1...399.9 V : 0.1 V
400... $600 \mathrm{~V}: 1 \mathrm{~V}$

- Accuracy (1):
0.1...399.9 V : $\leq 1.5 \% \mathrm{R} \pm 5 \mathrm{cts}$
$400 . . .600 \mathrm{~V}: \leq 1.5 \% \mathrm{R} \pm 3 \mathrm{cts}$
■ Input impedance: $1 \mathrm{M} \Omega$
- Frequency influence:
< 1\% R from 45 Hz to 450 Hz

DC Voltage

■ Measurement range:
2 automatic ranges: 0.1 .. 600 V DC

- Resolution:
0.1 .. 399.9V : 0.1 V
400.. 600V : 1 V
- Accuracy (1):
0.1...399.9 V : $\leq 1 \% R \pm 3$ cts
$400 \ldots 600 \mathrm{~V}: \leq 1 \% R \pm 2$ cts
■ Input impedance: $1 \mathrm{M} \Omega$

Resistance

■ Measurement range:
2 automatic ranges: 0.1 .. 4000Ω

- Resolution:
0.2...399.9 $\Omega: 0.1 \Omega$
400... 3999Ω : 1Ω
- Accuracy (1):
0.1...399.9 $\Omega: \leq 1 \% R \pm 5$ cts
400... $3999 \Omega: \leq 1 \% R \pm 3$ cts

Continuity

Beep signal for $\mathrm{R} \leq 40 \Omega$
Temporal response: 10 ms

Diode Test

The voltage value at the semiconductor junction is displayed directly in volts for the forward bias.
The test is carried out under a 4 V potential with a short circuit current of 500 mA

- Accuracy: $3 \% \mathrm{R} \pm 10$ cts
- Resolution: 1 mV

Functions

- MAX Function:

Displays the maximum value of the measured signal (current of voltage range).
Accuracy(1):
$\leq 2.5 \% \mathrm{R} \pm 3$ cts (largest scale)
$\leq 2.5 \% \mathrm{R} \pm 30$ cts (smallest scale)
Acquisition time: 100 ms

- HOLD Function:

Freezes displayed measurement.

Power Supply

9V Alkaline battery (NEDA 1604A, IEC 6LR61)

Battery life

≥ 100 Hrs of continual use
Automatic battery level tester

Mechanical Specification

Dimensions

$252 \times 97 \times 44 \mathrm{~mm}$
Weight: 500 g without battery

Display:

4000 count LCD
digit height: 12.5 mm

Voltage input:

Via (4 mm) safety sockets (pitch:19 mm)

Temperature:

In use: $+0^{\circ}$ to $+50^{\circ} \mathrm{C}$
In storage: -40° to $+70^{\circ} \mathrm{C}$

Relative Humidity:

In use: from 0 to 95% RH up to $30^{\circ} \mathrm{C}(50 \%$ RH at $45^{\circ} \mathrm{C}$)
In storage: from 0 to $95 \% \mathrm{RH}$ up to $40^{\circ} \mathrm{C}$ ($50 \% \mathrm{RH}$ at $70^{\circ} \mathrm{C}$)

Casing protection:

IP 30 (IEC 529)
Self-extinguishing ability: UL94 V2
Drop test: 1 m (IEC 68-2-32)

Mechanical shock:

100 g (IEC 68-2-27)

Vibrations:

10/55/10 Hz, 0.15 mm (IEC 68-2-6)
Operating altitude:
0 to 2000 m
Clamps max. cable diameter of:
\varnothing max : $42 \mathrm{~mm} / 2 \times \varnothing 25 \mathrm{~mm}$ or;
2 busbars of $50 \times 5 \mathrm{~mm}$

Colours:

Dark grey casing with red clamp jaws

Safety Specifications

Electrical:

Double insulated device in accordance with
IEC 1010-1 \& CEI 1010-2-032
600 V category III, degree 2 of pollution 300 V category IV, degree 2 of pollution
Overload Protection:
V range: 1000 V rms
A range: 700 A rms (to 500 Hz at $50^{\circ} \mathrm{C}$)
Ω range: 600 V rms
Continuity/Diode range: 600 V rms

Electromagnetic Compatibility

(E.M.C.):

EN 50081-1: Class B
EN 50082-2:
Electrostatic Discharge: IEC 1000-4-2
Radial field: IEC 1000-4-3
Rapid Transients: IEC 1000-4-4
Magnetic field at $50 / 60 \mathrm{~Hz}$: IEC $1000-4-8$

To Order	Reference
Clamp-on multimeter model F11N with test leads, battery, carrying case and user's manual	P01.1207.51C

Model F13N

Electrical Specification

Bandwidth

45... 450 Hz

AC Current

■ Measurement range:
2 automatic ranges: 0.5... 700 A AC
■ Resolution:
0.5...399.9 A: 0.1 A
400... $700 \mathrm{~A}: 1 \mathrm{~A}$

■ Accuracy (1):
0.5 .. 399.9 A: $\leq 2,5 \% R \pm 5$ cts
400...700 A : $\leq 2,5 \% R \pm 5$ cts from 0 to 90% of range
■ Crest factor influence
(for I peak < 1000 A):
$1.5 \leq C R<2.5: 5 \%$ of R
$2.5 \leq C R \leq 5: 8 \%$ of R

- Frequency influence
< 2\% R from 45 Hz to 450 Hz

AC Voltage

- Measurement range:

2 automatic ranges: 0.2... 600 V AC

- Resolution:
0.2...399.9 V : 0.1 V
400... $600 \mathrm{~V}: 1 \mathrm{~V}$
- Accuracy (1):
0.2...399.9 V : $\leq 1.5 \% \mathrm{R} \pm 5 \mathrm{cts}$
$400 . . .600 \mathrm{~V}: \leq 1.5 \% \mathrm{R} \pm 3 \mathrm{cts}$
- Crest Factor influence:
$1.5 \leq \mathrm{CF}<3: 3 \%$ of R
$3 \leq \mathrm{CF} \leq 5: 8 \%$ of R
■ Input Impedance: $1 \mathrm{M} \Omega$
- Frequency influence:
< 1\% R from 45 Hz to 450 Hz

DC Voltage

- Measurement range:

2 automatic ranges: 0.2 .. 600 V DC

- Resolution:
0.2 .. 399.9 V : 0.1 V

400 .. $600 \mathrm{~V}: 1 \mathrm{~V}$

- Accuracy (1) :
0.2...399.9 V : $\leq 1 \% \mathrm{R} \pm 3$ cts
$400 . .600 \mathrm{~V}: \leq 1 \% \mathrm{R} \pm 2 \mathrm{cts}$
■ Input impedance: $1 \mathrm{M} \Omega$

Resistance

■ Measurement range :
2 automatic ranges : 0.1 .. 4000Ω

- Resolution :
0.1 ... $399.9 \Omega: 0.1 \Omega$
400... $3999 \Omega: 1 \Omega$
- Accuracy (1)
0.2...399.9 $\Omega: \leq 1 \% R \pm 5 \mathrm{cts}$
400... $3999 \Omega: \leq 1 \% R \pm 3$ cts

Continuity

Beep signal for $\mathrm{R} \leq 40 \Omega \pm 10 \Omega$
Open circuit voltage: $\leq 4.4 \mathrm{~V}$
Short circuit current: $\leq 1.2 \mathrm{~mA}$

Diode Test

The voltage value at the semiconductor junction is displayed directly in volts for forward bias.
Displays OL for the reverse bias.
■ Open circuit voltage: $\leq 4.4 \mathrm{~V}$
■ Short circuit current: $\leq 1.2 \mathrm{~mA}$

- Accuracy: $3 \% \mathrm{R} \pm 10 \mathrm{pt}$
- Resolution: 1 mV

Frequency

- Measurement range: $0 . . .4000 \mathrm{~Hz}$
- Accuracy (1): $\leq 0.1 \% \mathrm{R} \pm 1 \mathrm{cts}$
- Trigger threshold: 1 V ou 1 A

Functions

- MAX Function:

Displays the maximum value of the measured signal (current or voltage range).

Accuracy:

Accuracy of range with additional error:
<2.5\% R ± 5 cts
Acquisition time: < 500 ms

- HOLD Function:

Freezes the displayed value.

Power supply

9V Alkaline battery
(NEDA 1604A, IEC 6LR61)

Battery life

≥ 100 Hrs in constant use
Automatic battery level tester

Dimensions

$252 \times 97 \times 44 \mathrm{~mm}$
Mechanical Specifications
Weight: 500 g without battery
Display:
4000 count LCD
digit height: 12.5 mm

Voltage input:

Via (4mm) safety sockets (pitch: 19 mm)
Temperature :
In use: $+0^{\circ}$ to $+50^{\circ} \mathrm{C}$
In storage: -40° to $+70^{\circ} \mathrm{C}$

Relative Humidity:

In use: from 0 to $95 \% \mathrm{RH}$ up to $30^{\circ} \mathrm{C}(50 \%$ RH at $45^{\circ} \mathrm{C}$)
In storage: from 0 to $95 \% \mathrm{RH}$

Casing protection:

IP 30 (IEC 529)
Self-extinguishing ability: UL94 V2
Drop test: 1 m (IEC 68-2-32)
Mechanical shock:
100 g (IEC 68-2-27)

Vibrations:

10/55/10 Hz, 0.15 mm (IEC 68-2-6)

Operating altitude:

0 to 2000 m

Clamps max. cable diameter of:
\varnothing max: $42 \mathrm{~mm} / 2 \times \varnothing 25 \mathrm{~mm}$ or; 2 busbars measuring $50 \times 5 \mathrm{~mm}$ Colour:
Dark grey casing with red clamp jaws

Safety Specifications

Electrical:

Double insulated device in accordance with IEC 1010-1 \& CEI 1010-2-032
600 V category III, degree 2 of pollution 300 V category IV, degree 2 of pollution

Overload protection:

V range: 1000 V rms
A range: 700 A rms (500 Hz at $50^{\circ} \mathrm{C}$)
Ω range: 600 V rms
Continuity/Diode range: 600 V rms
Hz range: 1000 V rms
Electromagnetic Compatibility
(E.M.C.) :

EN 50081-1 : Class B
EN 50082-2 :
Electricity: IEC 1000-4-2
Radial field: IEC 1000-4-3
Rapid Transients: IEC 1000-4-4
Magnetic field to $50 / 60 \mathrm{~Hz}$: IEC 1000-4-8

Model F15

Electrical Specification

Bandwidth

$45 . . .450 \mathrm{~Hz}$

AC current

■ Measurement range:
2 manual or automatic ranges:
0.5... 1000 A AC

- Resolution :
0.5...399.9 A: 0.1 A
400... 1000 A: 1A

■ Accuracy (1):
0.5..49.9 A : $\leq 2 \% \mathrm{R} \pm 10 \mathrm{cts}$
50.0...399.9 A : $\leq 2.5 \% \mathrm{R} \pm 2$ cts $400 \ldots 800 \mathrm{~A}: \leq 2.5 \% \mathrm{R} \pm 5 \mathrm{cts}$ 800... $1000 \mathrm{~A}: \leq 5 \% \mathrm{R} \pm 5 \mathrm{cts}$

■ Crest Factor Influence
(for I peak < 1000A):
400 A range:
$1.5 \leq C F<3: 5 \% R$
(for I peak < 600 A)
1000 A range:
$1.5 \leq$ CF < 3: 5\% R (for I peak < 1400 A)

DC current

- Measurement range:

2 automatic or manual ranges:
0.5... 1400 A DC

- Resolution:
0.5...399.9A : 0.1 A
400...1400A : 1 A
- Accuracy (1):
0.5...49.9 A : $\leq 2 \% R \pm 10 \mathrm{cts}$ 50.0...399.9 $\mathrm{A}: \leq 2,5 \% \mathrm{R} \pm 2 \mathrm{cts}$
400... $800 \mathrm{~A} \quad: \leq 2,5 \% \mathrm{R} \pm 5 \mathrm{cts}$
800... $1000 \mathrm{~A}: \leq 8 \% \mathrm{R} \pm 5 \mathrm{cts}$
- Automatic DC zeroing:
± 10 A DC

AC Voltage

■ Measurement range:
0.2...600V AC

4 automatic ranges:
4 / 40 / 400 / 600 V AC
5 manual ranges:
0.4 / 4 / 40 / 400 / 600 V AC

■ Resolution:
200.0... 399.9 mV : 0.1 mV
0.400...3.999 V : 1 mV
4.00...39.99 V : 10 mV
40.0...400.0 V : 100 mV
400... 600 V : 1V

■ Accuracy (1):
200.0... 399.9 mV : non-specified
0.400...3.999 V : $\leq 1.5 \% \mathrm{R} \pm 7$ cts
4.00...39.99 V $: \leq 1.5 \% \mathrm{R} \pm 2$ cts
40.0...400.0 V $: \leq 1.5 \% \mathrm{R} \pm 4 \mathrm{cts}$
$400 \ldots 600 \mathrm{~V} \quad: \leq 1.5 \% \mathrm{R} \pm 1 \mathrm{cts}$

- Crest Factor Influence:

4 V range:
$1.5 \leq C F<3: 3 \% R($ Peak $V \leq 6 V)$ 40 V range:
$1.5 \leq C F<3: 3 \% R($ Peak $V \leq 60 V)$ 400 V range:
$1.5 \leq$ CF < 3: 3% R (Peak V $\leq 600 \mathrm{~V}$)
600 V range:
$1.5 \leq C F<3: 3 \% R(P e a k V \leq 1000 V)$
■ Input Impedance: $10 \mathrm{M} \Omega$

DC Voltage

- Measurement range:

40 mV 600 V DC
5 automatic or manual ranges:
0.4 / 4 / 40 / 400 / 600 V DC

■ Resolution:
40.0... 399.9 mV : 0.1 mV
0.400...3.999 V : 1 mV
4.00...39.99 V : 10 mV
40.0...400.0 V : 100 mV $400 . .600 \mathrm{~V}: 1 \mathrm{~V}$

- Accuracy (1):
40.0... $399.9 \mathrm{mV}: \leq 1 \% \mathrm{R} \pm 3 \mathrm{cts}$ 0.400...3.999 V : $\leq 1 \% R \pm 2$ cts 4.00...39.99 V $: \leq 1 \% R \pm 2$ cts 40.0...400.0 V $: \leq 1 \% R \pm 1 \mathrm{cts}$ $400 \ldots 600 \mathrm{~V} \quad: \leq 1 \% \mathrm{R} \pm 1 \mathrm{cts}$
■ Input Impedance: $10 \mathrm{M} \Omega$

Resistance

■ Measurement range: 0.5... 400Ω
5 automatic or manual ranges:
400 / 4k / 40k / 400k / 4M / $40 \mathrm{M} \Omega$

- Resolution:

0.5...399.9 $\Omega \quad: 0.1 \Omega$
400... $3999 \Omega \quad: 1 \Omega$
4.00... $39.99 \mathrm{k} \Omega: 10 \Omega$
40.0... $399.9 \mathrm{k} \Omega: 100 \Omega$
$400 \ldots 3999 \mathrm{k} \Omega: 1 \mathrm{k} \Omega$
4.00...39.99 $\mathrm{M} \Omega: 10 \mathrm{k} \Omega$

- Accuracy (1):
0.5...399.9 $\Omega \quad: \leq 1.5 \% \mathrm{R} \pm 7 \mathrm{cts}$ 400... $3999 \Omega: \leq 1.5 \% R \pm 4 \mathrm{cts}$ 4.00...39.99 k $\Omega: \leq 1.5 \% \mathrm{R} \pm 4 \mathrm{cts}$ 40.0... $399.9 \mathrm{k} \Omega: \leq 1.5 \% \mathrm{R} \pm 4 \mathrm{cts}$ 400... $3999 \mathrm{k} \Omega: \leq 1.5 \% \mathrm{R} \pm 4 \mathrm{pt}$ 4.00...39.99 $\mathrm{M} \Omega$: non specified

Continuity

■ Resolution : 0.1Ω

- Accuracy (1): $2 \% \mathrm{R} \pm 12$ cts
- Beep signal for $\mathrm{R} \leq 40 \Omega \pm 10 \Omega$
- Temporal response: $\leq 10 \mathrm{~ms}$
- Open circuit voltage: $\leq 0.5 \mathrm{~V}$
- Short circuit current: $\leq 0.37 \mathrm{~mA}$

Diode Test

- Forward-Biased:

The value of the semiconductor junction voltage is displayed directly in V

- Reverse-Biased:

Value of the open circuit voltage

- Resolution: 1 mV
- Accuracy (1): 3% of reading $\pm 10 \mathrm{mV}$
- Open circuit voltage $: \leq 3.5 \mathrm{~V}$
- Short circuit current : $\leq 0.88 \mathrm{~mA}$

DC input for accessories

- Input Signal : $\pm 4000 \mathrm{mV}$ DC
- Sensitivity $: 1 \mathrm{mV} /$ count displayed
- Accuracy (1): $2 \% \mathrm{R} \pm 5$ cts

Functions

- Hz Function:

Works in V or A
Measurement range:
1... 4000 Hz

3 automatic ranges
Resolution:
1.00 ...99.99 Hz : 0.01Hz
$100.0 \ldots 999.9 \mathrm{~Hz}: 0.1 \mathrm{~Hz}$
1000 ... $4000 \mathrm{~Hz}: 1 \mathrm{~Hz}$
Accuracy (1):
$\leq 0.1 \% \pm 15$ cts
Trigger threshold:
$\geq 10 \mathrm{~V}$ or $\geq 20 \mathrm{~A}$
■ "DC Zeroing" Function:
Before each DC current measurement, this function automatically adjusts the DC zero setting.

- MIN/MAX Function:

Displays the minimum and maximum value of the measured signal.
An additional error is added to the typical range accuracy: 2.5% of reading.
This mode freezes the measurement range and eliminates the automatic power off.

- HOLD Function:

Freezes the measured value.

- Power supply:

9 V Alkaline battery
(NEDA 1604A, IEC 6LR61) field, no DC component, no external current carrying conductor, sinusoidal signal from 45 to 65 Hz .

- Battery life:
$\geq 60 \mathrm{Hrs}$ in continual use
Automatic battery level indicator. Automatic multimeter power off after 10 min's of not being used. This function can be disengaged during start up.

Mechanical Specifications

Dimensions:

$254 \times 97 \times 46 \mathrm{~mm}$

Weight:

600 g without battery
Display:
4000 count LCD
Digit height: 12.5 mm
Voltage input:
Via (4mm) safety sockets (pitch: 19mm)

Temperature:

In use: $+0^{\circ}$ to $+50^{\circ} \mathrm{C}$
In storage: -40° to $+70^{\circ} \mathrm{C}$

Relative Humidity:

In use: from 0 to $95 \% \mathrm{RH}$ up to $30^{\circ} \mathrm{C}$
($50 \% \mathrm{HR}$ at $45^{\circ} \mathrm{C}$)
In storage: from 0 to 95 \% RH

Casing protection:

IP 30 (IEC 529)
Self-extinguishing ability:
UL94 V0, (Display UL94 V1)
Drop test:
1m (IEC 68-2-32)
Mechanical shock:
100 g (IEC 68-2-27)

Vibrations:

10/55/10 Hz, 0.15 mm (IEC 68-2-6)
Operating altitude:
0 to 2000 m
Clamps max. cable diameter of:
$1 \mathrm{x} \varnothing 42 \mathrm{~mm}$ or $2 \mathrm{x} \varnothing 25 \mathrm{~mm}$ or;
Busbars :1 busbar: $50 \times 10 \mathrm{~mm}$ or 2 busbars: $50 \times 5 \mathrm{~mm}$

Colour:

Dark grey casing with red clamp jaws

Safety Specification

Electrical

Double insulated device in accordance with IEC 1010-1 \& IEC 1010-2-032
600 V category III, degree 2 of pollution 300 V category IV, degree 2 of pollution
Overload protection:
V range : 1000 V rms
A range : 1000 A AC rms ($\leq 1 \mathrm{kHz}$) 3000 A DC
Ω range : 600 V rms
Continuity/Diode range: 600 V rms
Hz range : 1000 V rms
ADP range: 1000 V rms

Electromagnetic Compatibility

(E.M.C.):

EN 50081-1: Class B
EN 50082-2:
Electrostatic discharge: IEC 1000-4-2
Radial field: IEC 1000-4-3
Rapid transients: IEC 1000-4-4
Magnetic field to $50 / 60 \mathrm{~Hz}$: IEC $1000-4-8$

F21 / F25 Series

In order to ensure the optimal quality of the electrical supply on a network it is essential to be able to measure and identify patterns of harmonic distortion so that corrective measures can be implemented.
These two clamp-on harmonic meters make for the rapid diagnosis, identification and measurement of harmonic "pollution". They measure voltages and intensities in true RMS value, as well as frequencies. Model F21 is designed for use on AC networks.

As a diagnostic tool, it directly measures the overall distortion of the current or the voltage. The F21 also has an analogue output so that the current may be displayed visually on an oscilloscope.
Model F25 is suited to both DC and AC networks. For a more thorough diagnosis the F25 measures harmonics order by order, as an absolute value (A or V) or as a relative value (\%) up to the $25^{\text {th }}$ harmonic.

Model F21

Electrical Specification

Current (true RMS AC)

0.05 to 700 A RMS
0.05 to 1000 A Peak

- Ranges:

0 to $100 \mathrm{~A}-100$ to $400 \mathrm{~A}-400$ to 700 A

- Typical accuracy
(45 to 65 Hz sinusoidal signal): 2%
- Frequency range:

15 Hz to 10 kHz

- Max sustainable overload:

3 kA Peak
Voltage (true RMS AC)
0.05 to 600 V RMS or DC
0.05 to 1200 V Peak

- Ranges:

0 to $400 \mathrm{~V}-400$ to 1000 V

- input impedance: $1 \mathrm{M} \Omega$
- Typical accuracy
(40 to 65 Hz sinusoidal signal): 1.5%
- Frequency range: 15 Hz to 10 kHz
- Max sustainable overload:
1.5 kV Peak

Peak Factor PF

■ Measurement range: 1 to 10

- Trigger threshold:

300 mA or 300 mV

- Resolution: 0.01
- Accuracy (40 to 450 Hz): 10%
- Frequency response: 15 Hz to 10 kHz

Frequency

- Measurement range: 0.5 to 9999 Hz
- Trigger threshold: 1 A or 1 V
- Ranges: 0.5 to $999.9 \mathrm{~Hz}-1000$ to 9999 Hz
- Accuracy:
0.5 to $999.9 \mathrm{~Hz}: 0.1 \%$ R. $\pm 1 \mathrm{ct}$

1000 to $9999 \mathrm{~Hz}: 0.2 \%$ R. $\pm 1 \mathrm{ct}$

Harmonics

Overall measurement of:

- Total harmonic distortionTHD: 0.5 to 600\%
- Trigger threshold: 300 mA or 300 mV
- Accuracy: $3 \% \pm 2$ pt
- Frequency range:

Fundamental between 45 and 65 Hz , Up to the $25^{\text {th }}$ harmonic

- Distortion factor DF: 0.5 to 100%
- Trigger threshold: 300 mA or 300 mV
- Accuracy: $3 \% \pm 2$ pt
-Frequency range:fundamental between 45 and 65 Hz , up to the $25^{\text {th }}$ harmonic

Analogue output: V out

- Measurement range:
0.05 to 700 A RMS for $1 \mathrm{mV} / \mathrm{A}$
0.05 to 60 A RMS for $10 \mathrm{mV} / \mathrm{A}$
- Accuracy: 3%
- Impedance: $4 \mathrm{k} \Omega, 47 \mathrm{pF}$
- Max sustainable overload: 1.5 kV Peak

Power supply:

- Type : 1 6LF22 9 V battery
- Battery life

50 hours of continual use (without using back-light)
Low battery level indicated by "battery" symbol

Model F25

Electrical Specification
Current (true RMS AC+DC)
0.30 to 1000 A RMS or DC
0.50 to 1500 A peak

■ Ranges:

0 to 60 A - 60 to 600 A - 600 to 1500 A
■ Resolution: $10 \mathrm{~mA}-100 \mathrm{~mA}-1 \mathrm{~A}$

- Basic accuracy
(45 to 65 Hz sinusoidal signal): 2\%
- Frequency range:

DC and 10 Hz to 5 kHz

- Automatic DC zeroing
- Max sustainable overload:

3 kA Peak
Voltage (true RMS AC+DC)
0.05 to 600 V rms or DC
0.1 to 1500 V Peak

■ Ranges:
0 to $60 \mathrm{~V}-60$ to $600 \mathrm{~V}-600$ to 1500 V
■ Resolution : $10 \mathrm{mV}-100 \mathrm{mV}-1 \mathrm{~V}$
■ Input impedance: $1 \mathrm{M} \Omega$

- Typical accuracy
(40 to 65 Hz sinusoidal signal): 1\%
- Frequency range:

DC and 10 Hz to 5 kHz

- Max sustainable overload:
1.5 kV Peak

Peak Factor

■ Measurement range: 1 to 10

- Resolution: 0.01

■ Accuracy (40 to 70 Hz):
2% for CF < 3.5 ± 2 cts

- Trigger threshold: 5 V or 5 A

Frequency

■ Measurement range: 0.5 to 19.99 kHz - Range:
0.5 to $99.99 \mathrm{~Hz}-100.0$ to 999.9 Hz 1000 to $9999 \mathrm{~Hz}-10.00$ to 19.99 kHz
■ Resolution: 0.01-0.1-1-10 Hz

- Accuracy ($<1 \mathrm{kHz}$): $0.1 \% \pm 2 \mathrm{cts}$
- Trigger threshold: 2 V or 2 A

DC Ripple

■ Measurement range: 2 to 999.9%
■ Ranges: 2 to 99.9 \% - 100.0 to 999.9 \%

- Resolution: 0.1%
- Accuracy: 5\%

Harmonics

Overall, or harmonic by harmonic up to $25^{\text {th }}$

- Total Harmonic Distortion (THD):
0.2 to 600\%

Overall accuracy across global THD:
$5 \% \pm 2$ cts
Frequency range:
fundamental between 40 and 70 Hz
Min. signal: 10 V or 10 A

- Distortion factor DF: 0.2 to 100\%

Overall accuracy across DF: 5\% ± 2 cts Frequency range:
fundamental between 40 and 70 Hz
Min. signal value: 10 V or 10 A
Power supply:

- Type: 4 LR6 1.5 V batteries or storage cell
- Battery life: 40 hours in continual use
- Displays hours left on battery supply
- Battery low indicator

Mechanical Specifications

Clamps max. cable diameter of:
$\varnothing 50 \mathrm{~mm}$ or; busbar: $80 \times 5 \mathrm{~mm}$
Display: 2×10000 count back-lit LCD,
1×100 count display
Dimensions:
$276 \times 104 \times 52 \mathrm{~mm}$

Weight:

670 g approx.
Operating temperature:
-10 to $+55^{\circ} \mathrm{C}$
Storage temperature:
-40 to $+70^{\circ} \mathrm{C}$
RH during use:
0 to 80% up to $40^{\circ} \mathrm{C}$

Safety Specifications

Protection level:

■ IEC 1010-2-032
Double insulation
Category III installation
Degree 2 pollution
Voltage rated: 600 V rms
■ EMC series IEC 1000-4
Mechanical protection ratings
Watertightness: IP40
Drop test: 1m
Mechanical shock: 100 g (IEC 68-2-27)
Vibrations: IEC 68-2-6
Casing self-extinguishing ability: UL94 V2

F23 / F27 Series

The F23 and the F27 clamp-on power meters offer the combined functions of the current, voltage, harmonic and power meter (single and matched 3 phase).
Designed for on-site use, the F23 and the F27 are particularly user friendly and offer easy handling. Measurement values are displayed as the true RMS value.

Model F23 is for use on AC circuits and the F27 handles both AC and DC installations.

For harmonic distortion measurement the F23
measures the total harmonic distortion whereas the F27 gives you all the harmonic distortion parameters order by order up to the $25^{\text {th }}$ harmonic.
The large display has a lighting facility and 3 reading levels that display all the measured parameters directly so there's no need to make calculations or carry out separate analysis.
The F27 comes equipped with an optical output (RS 232) making it possible to link up to your PC or printer. C.A TRANSFER Software operates under Windows and manages data recording.

Model F23

Electrical Specification
Current (true rms AC)
0.30 to 1000 A rms
0.30 to 1500 A peak

■ Ranges:
0 to 60 A - 60 to 600 A - 600 to 1500 A

- Resolution:

10 mA - 100 mA - 1 A
■ Typical accuracy (45 to 65 Hz sinusoidal):
2\%
■ Operating frequency: 10 Hz to 5 kHz
Voltage (true rms AC)
0.05 to 600 V rms
0.05 to 1500 V peak

■ Ranges:
0 to $60 \mathrm{~V}-60$ to $600 \mathrm{~V}-600$ to 1500 V
■ Resolution: $10 \mathrm{mV}-100 \mathrm{mV}-1 \mathrm{~V}$
■ Input impedance: $1 \mathrm{M} \Omega$

- Peak detection mode PEAK:

Additional error of 0.5% on the peak value ■ Typical accuracy (40 to 65 Hz sinusoidal): 1\%
■ Operating frequency: 10 Hz to 5 kHz

Crest Factor

■ Measurement range: 1 to 10
■ Resolution: 0.01
■ Accuracy (40 to 70 Hz):
2% for $C F<3.5 \pm 2$ cts

Frequency

■ Measurement range: 0.5 to 19.99 kHz

- Ranges:
0.5 to $99.99 \mathrm{~Hz}-100.0$ to 999.9 Hz

1000 to $9999 \mathrm{~Hz}-10.00$ to 19.99 kHz
■ Resolution: 0.01-0.1-1-10 Hz
■ Accuracy ($<1 \mathrm{kHz}$): $0.1 \% \pm 2$ cts

Harmonics

Measurement of:

- Total Harmonic Distortion THD:0.2 to 600\%
- Accuracy: $1 \% \pm 2$ cts
- Distortion Factor DF: 0.2 to 100\%
- Accuracy: $1 \% \pm 2$ cts
- Frequency range:

Fundamental between 40 and 70 Hz , Harmonics up to $25^{\text {th }}$ order

- Min. signal value: 10 V or 10 A
- Simultaneous display of the RMS value and THD or DF

Power

Measures single and matched 3 phase
Accounts for the direction of energy travel
(\pm sign for W and var.)

- Real power
- Measurement range: 10 W to 599.9 kW
- Ranges:

10 to $5999 \mathrm{~W}-6.00$ to 59.99 kW
60.0 to 599.9 kW

- Resolution: 1-10-100 W
- Accuracy: $2 \% \pm 2$ cts
- Frequency range: 0.5 Hz to 1 kHz
- Reactive power
- Measurement range: 10 var to 599.9 kvar
- Ranges:

10 to 5999 var - 6.00 to 59.99 kvar
60.0 to 599.9 kvar

- Resolution: 1-10-100 var
- Accuracy: $2 \% \pm 2$ cts
- Frequency range: 40 to 70 Hz
- Apparent power
- Measurement range: 10 VA to 599.9 kVA
- Range:

10 to 5999 VA -6.00 to 59.99 kVA
60.0 to 599.9 kVA

- Resolution: 1-10-100 VA
- Accuracy: $2 \% \pm 2$ cts
- Frequency range: 0.5 Hz to 1 kHz
- Power factor
- Measurement range: 0 to 1.00
- Resolution: 0.01
-Accuracy: 3% (from 0.5 to 1) ± 2 cts
- Power factor translation $(\cos \varphi)$
-Measurement range: 0 to ± 1.00 inductive and capacitive
- Accuracy: $5 \% \pm 2$ cts

Power supply

■ Type:
4 LR6 1.5 V batteries or storage cell

- Battery life:

40 Hrs in continual use (without backlight)
■ Low battery level indicator

Mechanical Specification

Clamps max. cable diameter of:
$\varnothing 50 \mathrm{~mm}$ or; busbar: $80 \times 5 \mathrm{~mm}$
Display:
3 x10000 count backlit LCD

Dimensions:

$275 \times 103 \times 50 \mathrm{~mm}$

Weight:

670 g approx.
Operating temperature:
-10 to $+55^{\circ} \mathrm{C}$

Operating RH:

0 to 90% up to $40^{\circ} \mathrm{C}$

Safety Specification

Conformity to standards:

- IEC 1010-2-032

Double insulation
Installation Category III
Degree of pollution 2
Voltage rating: 600 V rms

- CEM series IEC 1000-4

Mechanical protection

Watertightness: IP40
Drop test: 1 m
Mechanical shock: 100 g (IEC 68-2-27)
Vibrations: IEC 68-2-6
Self-extinguishing ability of the box: UL94 V2

Accessories Supplied

Carrying case with pre-cut foam lining 21.5 m banana/banana (4 mm) leads 2 test probes (4 mm) with protection guard 2 safety croc-clips
$4 \times 1.5 \mathrm{~V}$ batteries

Model F27

Electrical Specification

Current (true rms AC+DC)
0.30 to 1000 A rms or DC
0.30 to 1500 A peak

- Ranges:

0 to 60 A - 60 to $600 \mathrm{~A}-600$ to 1500 A

- Resolution: $10 \mathrm{~mA}-100 \mathrm{~mA}-1 \mathrm{~A}$
- Typical accuracy (45 to 65 Hz sinusoidal):

2\%

- Operating frequency:

DC and 10 Hz to 5 kHz

- Automatic DC zeroing

Voltage (true rms AC+DC)
0.05 to 600 V rms or DC
0.05 to 1500 V peak

- Ranges:

0 to $60 \mathrm{~V}-60$ to $600 \mathrm{~V}-600$ to 1500 V

- Resolution : $10 \mathrm{mV}-100 \mathrm{mV}-1 \mathrm{~V}$
- Input impedance: $1 \mathrm{M} \Omega$
- Peak detection mode PEAK: Additional error of 0.5% on the peak value
- Typical accuracy (40 to 65 Hz sinusoidal): 1\%
- Operating frequency:

DC and 10 Hz to 5 kHz

Crest Factor

- Measurement range: 1 to 10
- Resolution: 0.01
- Accuracy (40 to 70 Hz):
2% for CF $<3.5 \pm 2$ cts

Frequency

■ Measurement range: 0.5 to 19.99 kHz

- Ranges:
0.5 to $99.99 \mathrm{~Hz}-100.0$ to 999.9 Hz

1000 to $9999 \mathrm{~Hz}-10.00$ to 19.99 kHz

- Resolution: $0.01-0.1-1-10 \mathrm{~Hz}$
- Accuracy ($<1 \mathrm{kHz}$): $0.1 \% \pm 2 \mathrm{cts}$

DC Ripple

- Measurement range: 2 to 999.9%
- Ranges: 2 to 99.9 \% - 100.0 to 999.9 \%
- Resolution: 0.1 \%
- Accuracy: 5%

THD Factor

- Measurement range: 0.2 to 1
- Resolution: 0.01
- Accuracy: $5 \% \pm 2$ cts

Harmonics

Total and order by order harmonic measurement to the $25^{\text {th }}$ harmonic:

- Total Harmonic distortion: 0.2 to 600%
- Accuracy of THD: $1 \% \pm 2$ cts
-Distortion factor: 0.2 to 100%
- Accuracy of overall DF: $1 \% \pm 2$ cts
- Frequency range:

Fundamental between 40 and 70 Hz

- min. signal value : 10 V or 10 A
- Simultaneous display of RMS value and of

THD or DF

K Factor

- Measurement range: 1 to 30
- Ranges: 1.0 to 9.9 - 10.0 to 30
- Resolution: 0.1 ± 2 cts
- Accuracy: 5% up to $K F=10$

Power

Measurement in single and matched 3 phase
Accounts for the direction of energy travel
(\pm sign for W and var)

- Real Power
- Measurement range: 10 W to 599.9 kW
- Ranges:

10 to $5999 \mathrm{~W}-6.00$ to 59.99 kW
60.0 to 599.9 kW

- Resolution: 1-10-100 W
- Accuracy: $2 \% \pm 2$ cts
- Frequency range: 0.5 Hz to 1 kHz
- Reactive power
- Measurement range: 10 var to 599.9 kvar
- Ranges:

10 to 5999 var - 6.00 to 59.99 kvar
60.0 to 599.9 kvar

- Resolution: 1-10-100 var
- Accuracy: $2 \% \pm 2$ pt
- Frequency range: 40 to 70 Hz
- Apparent power
- Measurement range: 10 VA to 599.9 kVA
- Ranges:

10 to 5999 VA -6.00 to 59.99 kVA
60.0 to 599.9 kVA

- Resolution: 1-10-100 VA
- Accuracy: $2 \% \pm 2$ cts
- Frequency range: 05 Hz to 1 kHz
- Power factor
- Measurement range:0 to 1.00
- Resolution: 0.01
- Accuracy: 3% (from 0.5 to 1) ± 2 cts
- Power factor translation $(\cos \varphi)$
- Measurement range:

0 to $\pm 1,00$ inductive (+) and capacitive (-)

- Accuracy: $5 \% \pm 2$ cts

Power supply
 \section*{- Type:}

4 LR6 15 V batteries or storage cell

- Battery life:

40 Hrs in continual use

Series output

Fibre Optic output type RS232
Unidirectional mode up to 19200 bauds, parity, stop bit and adjustable number of data bits.
Operates with printer or PC
Sending of data in SCAN mode from 1 to 99 min selectable
C.A Transfer software runs under Windows for data storage and conversion in the text table.

Mechanical Specification

Clamps max. cable diameter of:
$\varnothing 50 \mathrm{~mm}$ or; busbar $80 \times 5 \mathrm{~mm}$ Display:
3×10000 count backlit LCD
Dimensions: $275 \times 103 \times 50 \mathrm{~mm}$
Weight: 670 g approx.
Operating temperature:

-10 to $+55^{\circ} \mathrm{C}$

Operating HR:

0 to 90% up to $40^{\circ} \mathrm{C}$

Safety Specification

Standards conformity:

- IEC 1010-2-032

Double insulation Installation Category III
Degree of pollution 2 Voltage rated : 600 V rms

- CEM series IEC 1000-4

Mechanical protection
Watertightness: IP40
Drop test: 1 m
Mechanical shocks: 100 g (IEC 68-2-27)

Vibrations: IEC 68-2-6

Self-extinguishing ability of casing:

 UL94 V2
Accessories supplied

Carrying case with pre-cut foam padding $2 \times 1.5 \mathrm{~m}$ banana/banana leads 2 test probes (4 mm) with protection guard 2 safety croc-clips
$4 \times 1.5 \mathrm{~V}$ batteries

Series C.A 6410, C.A 6412 \& C.A 6415

The clamp-on ground resistance tester models C.A 6410, C.A 6412 and C.A 6415 are at the forefront of innovative clamp-on application design. The earthing point is a key element in electrical protection, consisting of several equipotential (ie. the earth surface) links forming a parallel earthing network. Clamps C.A 6410, C.A 6412 and C.A 6415 give the user the ability to carry out ground testing in the most time effective manner, also allowing traditional ground rod measurement methods to be used. Thus the test can be carried out without having to plant additional ground rods or having to disconnect
the electrical installation from the ground during testing.
All of these clamps can measure resistances from 0.1Ω up to 1200Ω. Models C.A 6412 and C.A 6415 can also be used to measure leakage currents between 1 mA and 30 A flowing in the ground.
Model C.A 6415 is additionally equipped with an alarm function (alerts the user that the threshold has been crossed) and a memory for storage of up to 99 measurements.

Models C.A 6410 / C.A 6412 / C.A 6415

Applications

Clamps C.A 6410, C.A 6412 and C.A 6415 are designed for resistance testing of all systems that behave as conductive loops.

Measurement principle :

Some electrical installations are equipped with parallel multiple earthing points. In some countries the earth is "distributed" at each user on the network by the electricity company.
In the railway or telecommunications networks the parallel earthing points ensure the safety and efficiency of the network. For establishments using electrically sensitive equipment, a network of conductors linked to multiple earthing points gives a neutral point without the drawback of equipotentiality.

The theory diagrams of these two types of network are shown in figures 1 and 2.

Figure 1
If the clamp's "generator" coil develops an AC voltage of constant value E around the gripped conductor, then a current I = E/Rioop travels across the resistive loop. This current is then measured by the clamp's "receiver" coil. Knowing both E and I, the loop resistance is calculated and displayed.

Figure 2
$R_{\text {loop }}=R_{x}+R_{\text {aux }}$
($R_{\text {aux }}=$ equivalent to $R_{1} \ldots R_{n}$ in parallel)
Since $R_{x} \gg R_{\text {aux }}$
We obtain $R_{\text {loop }} \# R_{x}$

Electrical Specification

Resistance:

- Measurement range:
$0.1 . . .1200 \Omega$ (automatic range selection)
- Measurement frequency:

2400 Hz (generated voltage $=60 \mathrm{mV}$ rms AC, sinusoidal)

- Resolution and accuracy

Measurement range	Resolution	Accuracy
$0.1 \ldots 1 \Omega(1)$	0.01Ω	$\pm(2 \%+0.02 \Omega)$
$1.0 \ldots 50 \Omega$	0.1Ω	$\pm(1.5 \%+0.1 \Omega)$
$50 \ldots 100 \Omega$	0.5Ω	$\pm(2.0 \%+0.5 \Omega)$
$100 \ldots 200 \Omega$	1Ω	$\pm(3.0 \%+1 \Omega)$
$200 \ldots 400 \Omega$	5Ω	$\pm(6.0 \%+5 \Omega)$
$400 \ldots 600 \Omega$	10Ω	$\pm(10 \%+10 \Omega)$
$600 \ldots 1200 \Omega$	50Ω	approx.25\%

(1) Measurement indication from 0.07Ω, accuracy is not guaranteed below 0.1Ω

- Influence of interference currents in the loop:
- Operate margins:

5 A / 50 V ($50-60 \mathrm{~Hz}$)

- Influence (example):
typically 3\%; 5\% max,
for 1 noise source $=1 \mathrm{~A}$,
and measured $R=30 \Omega$

Intensity:

- Measurement range:
0... 30 A RMS (automatic range selection)
- Frequency region:
$47 \ldots 800 \mathrm{~Hz}$
- Resolution and accuracy

Measurement range	Resolution	Accuracy
$0 \ldots 300 \mathrm{~mA}$	1 mA	$\pm(2.5 \%+2 \mathrm{~mA})$
$0.300 \ldots 3.000 \mathrm{~A}$	1 mA	$\pm(2.5 \%+2 \mathrm{~mA})$
$3.00 \ldots 30.00 \mathrm{~A}$	10 mA	$\pm(2.5 \%+20 \mathrm{~mA})$

■ Overload:
Continual $=100 \mathrm{~A}(50 / 60 \mathrm{~Hz})$
Transient $(<5 \mathrm{~s})=200 \mathrm{~A}(50-60 \mathrm{~Hz})$

Functions

ON/OFF

$\boldsymbol{\Omega}$: Resistance Measurement (second function : increments)
A: Current Measurement (second function: decrements)
HOLD: Holds the last measurement displayed
AL: Activates and adjusts the alarm
MEM:Records measurements, recalls or erases.

Functions	C.A 6410	C.A 6412	C.A 6415
ON / OFF	yes (1)	yes	yes
Ω	-	yes	yes
A	-	yes	yes
HOLD	yes	yes	yes
AL	-	-	yes
MEM	-	-	yes

.A 6410 starts directly in Ω mode

Other Specifications

Watertightness:

IP30 in accordance with IEC 359
Clamps max. cable diameter of: $\varnothing 30 \mathrm{~mm}$ max.

LCD:

$33 / 4$ digit, $44 \times 28 \mathrm{~mm}$

Temperature :

In use: - 10 to $+55^{\circ} \mathrm{C}$
In storage: -30 to $+70^{\circ} \mathrm{C}$
Relative humidity :
In use: 0 to 90% from -10 to $+40^{\circ} \mathrm{C}$ and 75% at $55^{\circ} \mathrm{C}$
In storage: 0 to 95%

Power supply:

9 V Alkaline battery 6LF22 or equiv.

Battery life:

12 Hrs or approx. 1500×30 s measurements

Dimensions:

$235 \times 100 \times 55 \mathrm{~mm}$

Weight :

1 kg

Safety specifications

Double insulation:

Conforms with the IEC 1010-2-032 standard:
150 V Category III, degree 2 of pollution
Agency approvals: UL, CSA, GS.
Shock resistance:
100 G (IEC 68-2-27)
Vibration resistance:
$0,15 \mathrm{~mm}$ from 10 to 55 Hz (IEC 68-2-6)

Drop test:

1 m (IEC 68-2-32)
\qquad /

Address Details	
Surname:	Profession:
$1^{\text {st }}$ Name:	Sector of industry:
Company:	
Address:	
Town :	
Post code:	Telephone N° :
Country:	Fax N° :

| Description/Comments: |
| :--- | :---: |
| |

Delivery Format

Without instruction manual
\square With CHAUVIN ARNOUX instruction manual (standard)
\square With personalised operating instructions
\square Marquage produit CHAUVIN ARNOUX (standard)
\square Personalised brand markings (supply all plans, diagrams, logotype, etc. necessary for personalisation)

- Packaging

\square Standard CHAUVIN ARNOUX cardboard box
\square Plain cardboard box
\square Other : \qquad
\qquad

Fax this page to: (33) 0146270748

Chauvin Arnoux

- Vevtachinnc

StraBburger Str. 34-77694 KEHL / RHEIN
Tel: (07851) 99 26-0
Fax: (07851) 99 26-60
e-mail: info@chauvin-arnoux.de
www.chauvin-amoux.de

C/ Roger de Flor No293 - Planta 1
08025 BARCELONA
Tel: (93) 4590811
Fax: (93) 4591443
e-mail: comercial@chauvin-arnoux.es www.chauvin-arnoux.es

- 150110

Via Sant' Ambrogio, 23/25
20050 BAREGGIA DI MACHERIO (MI)
Tel: (039) 2457545
Fax: (039) 481561
e-mail: info@amra-chauvin-arnoux.it
www.chauvin-arnoux.it

UUS土 दTHudfur
Waldeck House - Waideck Road
MAIDENHEAD SL6 8BR
Tel: 01628788888
Fax: 01628628099
e-mall: info@chauvin-arnoux.co.uk
www.chauvin-arnoux.co.uk

115

d.b.a AEMC Instruments

200 Foxborough Blvd
FOXBOROUGH, MA 02035
Tel: (508) 698-2115
Fax: (508) 698-2118
e-mall: sales@aemc.com
www.aemc.com

Slamastrasse 29 / 3
1230 WIEN
Tel: (1) 6161961
Fax: (1) 616196161
e-mail: vie-office@chauvin-arnoux.at
www.chauvin-arnoux.at

Mernste

Einsiedlerstrasse 535
8810 HORGEN
Tel: (01) 7277555
Fax: (01) 7277556
e-mail: info@chauvin-arnoux.ch
www.chauvin-arnoux.ch

Tel: +33144854486
Fax: +33146279559
or
Tel: +33450642222
Fax: +33450642213
e-mail: export@chauvin-arnoux.fr

FRANCE

190, rue Championnet - 75876 PARIS Cedex 18
Tel: +33144854480
Fax: +33146279559
e-mail: export@chauvin-arnoux.fr
www.chauvin-arnoux.fr

UNITED KINGDOM
Waldeck House, Waldeck Road - MAIDENHEAD SL6 8BR
Tel: 01628788888
Fax: 01628628099
e-mail: info@chauvin-arnoux.co.uk
www.chauvin-arnoux.co.uk

[^0]: $\begin{array}{ll}\text {) The upper value corresponds to } 120 \% \text { of the maximum nominal value. } & \text { (2) Regeneration of the } A C \text { signal by diodes } \\ \text { (3) Lead + electronic unit with } \varnothing 4 \mathrm{~mm} \text { safety connectors, } & \text { (4) This pagination refers to the clamps catalogue } \\ \text { centre distance } 19 \mathrm{~mm} \text {, for } K \text { and AmpFLEX" series } & \end{array}$

[^1]: The upper value corresponds to 120% of the maximum nominal value.
 (2) This pagination refers to the clamps catalogue

[^2]: (1) Reference conditions : $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to $70 \% \mathrm{RH}$, external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no DC component, no external current carrying conductor, centred test sample, load impedance $1 \mathrm{M} \Omega$.

[^3]: (1) Reference conditions: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to $70 \% \mathrm{RH}$, sinusoidal signal frequency 48 Hz to 65 Hz , external magnetic field< $40 \mathrm{~A} / \mathrm{m}$, no DC components, no external current carrying conductor, test sample centered, 1Ω load.
 (2) Out of reference field

[^4]: (1) Reference conditions: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to $70 \% \mathrm{RH}$, sinusoidal signal frequency 48 Hz to 65 Hz , external magnetic field< $40 \mathrm{~A} / \mathrm{m}$, no DC components, no external current carrying conductor, test sample centered, $>1 \mathrm{M} \Omega$ load.
 (2) Out of reference field

[^5]: (1) Reference conditions: $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}$, sinusoidal signal, frequency of 48 Hz to 65 Hz , distortion factor < 1%, no DC component, external magnetic field < $40 \mathrm{~A} / \mathrm{m}$, no AC magnetic field, centered tested sample, load impedance :- Range $250 \mathrm{~A}: 0.1 \Omega(2,5 \mathrm{VA})$

 - Range $500 \mathrm{~A}: 0.2 \Omega$ (5 VA)
 - Range 1000 A : 0.2Ω (5 VA)

[^6]: (1) Reference Conditions : $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field < $40 \mathrm{~A} / \mathrm{m}$, no DC component, no current carrying conductor close by, centred test sample

[^7]: (1) Reference Conditions: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no DC current, no current carrying conductor close by, centred test sample.

[^8]: (1) Reference Conditions: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no DC component, No adjacent current carrying conductor , centred test sample.

[^9]: (1) Reference Conditons: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{K}, 20$ to $75 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field $<40 \mathrm{~A} / \mathrm{m}$, no DC component, no current carrying conductor close by, centred test sample.

[^10]: * Reference conditions : $23^{\circ} \mathrm{C} \pm 6 \mathrm{~K}, 20$ to $75 \% \mathrm{RH}$, frequency 10 Hz to 100 Hz , sinusoidal signal, no external AC magnetic field, external magnetic field < $40 \mathrm{~A} / \mathrm{m}$ (earth field) tested sample centered.

[^11]: (1) Reference conditions: 18° to $28^{\circ} \mathrm{C}, 20$ to $75 \% \mathrm{RH}, 48$ to 65 Hz , external magnetic field < $40 \mathrm{~A} / \mathrm{m}$, no DC component, no current carrying conductor nearby, centred test sample, load

