SIUI

汕头市超声仪器研究所有限公司

CTS-9006 仪器简易操作说明

一、仪器界面简介

1.按键

表1 按键说明表

按键符号	按键名称	描述			
	方向键	用于选择子菜单、调节数值的增减、选项的切换等。			
		自定义功能键,可定义为"峰值包络"、"峰值回波"、			
	工力台となま	"屏幕拷贝"或"打印"的功能。			
冻结	功肥健	启用/取消冻结功能。			
AGC		启用/取消自动增益功能。			
\bigcirc	确认键	用于执行功能或确认选项。			
IT T		用于最基本的仪器调节。包括范围、声速、延迟、零点、			
至4		抑制、增益、步进及闸门起位、宽度和电平等。			
DAC		用于调出 DAC 主菜单。			
AVG	主菜单键	用于调出 AVG 主菜单。			
校正		用于调出自动校正主菜单。			
存储		用于调出存储主菜单。			
设置		用于调节设置主菜单。			
C	电源键	用于开机/关机。			

2.菜单

主菜单	子菜单	主菜单	子菜单	主菜单	子菜单
基本	增益	DAC	DAC 操作	标准选择	标准名称
	步进		闸门起位		标准等级
	声程^		增益		

表 2 菜单结构

汕头市超声仪器研究所有限公司

声速^	声程^	
延迟^	判废线	
零点^	定量线	
抑制	评定线	
闸门起位^	补偿	
闸门宽度	曲线选择	
闸门电平	标准选择	

表2(续)

菜单	子菜单	主菜单	子菜单	主菜单	子菜单
	存储号	AVG	AVG 操作	自动校正	闸门起位
	存入		闸门起位		参照物1
	调出		增益		参照物 2
册归	删除		声程^		增益
方碑	目录		基准孔径		声程^
1于1泊	预览		AVG 曲线 1		声速^
	删除所有		AVG 曲线 2		延迟^
	输出		AVG 曲线 3		零点^
			补偿		选项
			衰减		角度测量

表2(续)

主菜单	子菜单	主菜单	子菜单	子菜单	子菜单
	闸门起位		角度^	报警方式	日期时间
	孔深]	K 值^	坐标模式	回出厂设置
	孔径		前沿长度	AVG 探头频率	
角度测量	增益	设置	工件厚度^	AVG 晶片尺寸	
	声程^		发射方式	F1 键	
	角度结果		阻尼	颜色方案	
	K 值结果		频带	自动波高	
			检波方式	填充选项	
			重复频率	打印格式	
			单双探头	语言	

注 1: 标注黑体字体的文字表示该子菜单带有扩展子菜单。选中激活后,会弹出扩展子菜单。

注 2: 标有 "^"号的子菜单具有微调/粗调操作,当仪器子菜单右边显示 "^" 符号表示微调状态;显示 "-"

- 2 -

符号表示粗调状态。

3.画面

图1 仪器画面示意图

4.测量数据区

测量数据区的视图见图 2,参数和符号的意义见表 3。

Rs	1	2	3	4	Re	CL/EW:xxxx	
∖:xx	xx	↓:xxxx	→: x	xxx	H:xxxx	HdB:xxxx * 🔿	

图 2 测量数据区示意图

表 3 参数和符号的意义说明

参数和符号	描述			
7	闸门内回波测量点声程。			
Н	闸门内回波测量点幅度百分比。			
HdB	闸门内回波测量点幅度和闸门高度间的 dB 差值。			
Ļ	斜探头探伤时,闸门内回波测量点的深度。			
\rightarrow	斜探头探伤时,从探头前沿到闸门内回波测量点的水平距离。			
- 3 -				

汕头市超声仪器研究所有限公司

CL	表示 DAC 曲线下闸门内回波测量点所处区域。(仅在 DAC 曲线下显示)
EW	表示 AVG 曲线下闸门内回波测量点的平底孔当量。(仅在 AVG 曲线下显示)
Rs	范围起点。
Re	范围终点。
1, 2, 3, 4	该坐标格刻度线对应距离的显示值。
*	启用冻结标志,如果没有,显示空白。
0	报警标志,在报警状态下变色闪烁实心圆,在无报警状态下为空心圆。
	电池电量标志。

二、横波斜探头探伤步骤

假设使用 CTS-9006 探伤仪、2.5Z14×14K2 斜探头,应用 JB4730-2005 标准,对 20mm 厚钢板对接焊缝进行检测,工作程序一般如下。

- 注: ◆ 本例以 JB4730-2005 标准作举例,应用其他标准的探伤步骤相同。
 - ◆ 本仪器不用对状态进行清零或预先选择存储号,只需在所有参数设置(包括 DAC 曲线制 作等)完成后存入空白存储号中即可。

2.1 仪器参数初步设定

【设置】菜单中,"回出厂设置"=on。(恢复出厂设置完成后会自动变为"off")

2.2 探头参数测定

1) "声速"、"零点"和"前沿长度"的测定

按『校正』键,用探头对 CSK-IA 试块 R50 进行扫查,找到回波最高 点,调节"闸门起位",使闸门套住该回波,按 22 键;然后用探头对 CSK-IA 试块 R100 进行扫查,找到回波最高点,调节"闸门起位",使闸门套住该 回波,再按 22 键。此时,测量结果即显示在"声速"、"零点"项目中,即完成 "声速"、"零点"的测定。同时,用钢尺量出探头的前沿长度(可在『设置』 菜单中的"前沿长度"中输入数据)。

注: "零点"即探头晶片到入射点间的有机玻璃(或保护膜)声时。

2) "角度"(或"K值")的测量选中『校正』菜单中的"角度测量",并按键,进入角度测量界面。设

- 4 -

SIUI

定"孔深"=30.0mm,"孔径"=50.0mm。

用斜探头对 CSK-IA 试块上圆心距离探测面 30mm 的Φ50mm 孔进行扫射, 确定最高回波,固定探头,调节"闸门起位",使闸门套住该回波,确认该回 波为闸门内最高回波,按键,测量结果即显示在"角度"和"K 值"项目中。

2.3 制作 DAC 曲线

1) 设定『DAC』菜单中"DAC 操作" = 记录 , 开始制作曲线。

2) 用已校正过的斜探头扫射对比试块 CSK-IIIA 上深度 10mm 的Φ1×6 孔,找 到最高回波,按 AGC 键,使回波波幅为 80%,调节"闸门起位",使闸门套住 该回波,按 键,即记录第一个回波参考点,并自动绘出第一段曲线;

注: 仪器需处于『DAC』菜单时,按🞯键才能取中回波参考点。

3) 重复上述操作,依此记录下 20mm、30mm、40mm、50mm 等由浅到深孔 的回波。

注:如出现仪器所显示的反射孔深度值出现错误时,请注意调整【设置】菜单中的"厚度"栏目所 设定的数值。

4) 记录完所有回波参考点后,根据应用的探伤标准及等级(本例为JB4730-2005、20mm钢板对接焊缝),设定"判废线"=+5.0dB、"定量线"=-3.0dB、"评定线"=-9.0dB;并对表面耦合损失给予补偿(如需补偿4dB,则设定"补偿"=4.0dB);如探伤时需读取缺陷波的波峰与定量线间的dB差值,则设定"曲线选择"=定量线。此时即完成DAC曲线的制作及相关设置。

注:如应用其他探伤标准,对比试块应根据标准进行选择,判废线、定量线、评定线的灵敏度及 表面补偿 dB 数等也需按标准的相应要求进行设置。

5) 在『存储』菜单中,选择一个空的存储号,选中"存入"项,按方向键▶,保存当前数据(DAC曲线、测量参数及仪器其他设置均会同时保存),并记录下该编号,以备探伤时调出使用。

2.4 探伤使用

调节『设置』菜单中的"厚度"与被测焊板厚度相同(本例为 20.0mm)。
注:此时,仪器所显示的"深度"值为距离探测面的实际深度。

2) 用斜探头对焊缝区域进行扫查。当发现缺陷时,用闸门套住缺陷回波,屏 幕下方数据栏中即显示缺陷回波峰值与当前选中曲线(定量线)的dB差(HdB),

- 5 -

以及缺陷位置的相关数据(声程"丶"、深度"↓"、前沿距离"→")。

三、纵波单晶直探头的操作

假设使用 CTS-9006 探伤仪、2.5Z20N 直探头,对锻件、钢板等进行检测,工作程序一般如下。

注:本仪器不用对仪器状态进行清零或预先选择存储号,在所有参数设置<包括 DAC 曲线制作>完 成后再选择空存储号存进去即可。

3.1 仪器参数初步设定

『设置』菜单中,"回出厂设置"=on,"厚度"=250。

3.2 探头参数测定

1) "零点"的测定

『校正』菜单中,"参照物 1"=100mm,"声程"=250.0mm,"声速"=5920m/s, "选项"=零点。

用探头对 CSK-IA 试块 100mm 厚的面进行扫查,找到回波最高点,调节"闸门 起位",使闸门套住该回波,按❷键,测量结果即显示在"零点"项目中,即完成"零 点"的测定。

3.3 探伤使用

- 调节"声程"值为被测工件厚度的 1.5 倍左右、或使屏幕可显示需观察的 多次回波。调节『设置』菜单中的"厚度"与被测焊板厚度相同。
- 2) 按相关探伤标准(或工艺),调节增益至所需的探伤灵敏度。
- 3) 对工件进行扫查,当发现缺陷时,测出缺陷的面积(钢板),或用闸门套住 缺陷波(或底波),调节增益或按 AGC 键使回波达到基准波高,读取屏幕 上显示的"增益"值、声程(深度)等数据,并根据相关数据及公式计算 缺陷的当量大小(锻件)。

四、纵波双晶直探头的操作

假设使用 CTS-9006 探伤仪、2.5Z20FG10Z 双晶直探头,对钢板进行检测,工 作程序一般如下。

注:本仪器不用对仪器状态进行清零或预先选择存储号,在所有参数设置<包括 DAC 曲线制作>完 成后再选择空存储号存进去即可。

- 6 -

SIUI

4.1 仪器参数初步设定

『设置』菜单中,"回出厂设置"=on,"厚度"=100。

4.2 探头参数测定

1) "零点"的测定

『校正』菜単中,"参照物 1"=10mm,"参照物 2"=18mm,"声程"= 100.0mm, "声速" = 5920m/s,"选项" =声速+零点。

用探头对阶梯试块 10mm 厚处进行扫查,找到回波最高点,调节"闸门起位", 使闸门套住该回波,按 键即记录下第 1 个参考点的数据;用探头对阶梯试块 18mm 厚处进行扫查,找到回波最高点,调节"闸门起位",使闸门套住该回波,按 键 即记录下第 2 个参考点的数据;此时,声速和零点校正结束,校正结果显示在"声 速"和"零点"项目中。

4.3 探伤使用

1)调节"声程"值为被测工件厚度的 1.5 倍左右、或使屏幕可显示需观察的多次回波。调节『设置』菜单中的"厚度"与被测焊板厚度相同。

2) 按相关探伤标准(或工艺),调节增益至所需的探伤灵敏度。

3) 对工件进行扫查,当发现缺陷时,测出缺陷的面积。

<结束>

编制:汕头市超声仪器研究所有限公司 郭伟东 13809841396

- 7 -